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This document describes post-quantum TLS experiments that I have done in the context of writing my
PhD thesis. It contains significants parts of chapter 11 of my thesis manuscript, which are in turn based on
prior work with Douglas Stebila and Peter Schwabe [36, 37].

Note that we are only comparing the sizes and performance characteristics of the schemes in this and other
chapters. It can be argued if this is fair: for example, hash-based schemes, which are generally slow and large,
are based on assumptions that are considered to be much more conservative than those assumptions on
which much-faster lattice-based schemes are based. However, although one might say a particular scheme
performs “best”, these comparisons are still useful to estimate the cost of more conservative approaches.

The experimental data and the implementation are found at github.com/thomwiggers/kemtls-experiment/
in the branch thesis.

Limitations

For the web, it is important to note that there are several additional signatures that need to be considered:
I am not including OCSP staples, and SCTs in these TLS handshakes. Additionally, the measurements
reported are done over a simulated network environment: results by Bas Westerbaan [41] show that likely
there will be more subtle increases in handshake latency than the sudden jumps observed in my tables when
an experiment crosses the congestion window threshold.

Suggested reading approach

This document is quite long and has a lot of comparisons. To get the most out of it, I recommend focusing
on those scenarios that you find interesting. In section 2, we show the instantiations, that is the combinations
of key encapsulation mechanisms (KEMs) and signature schemes, that I have investigated. In the following,
I report figures for both unilateraly and mutually-authenticated TLS handshakes, at National Institute of
Standards and Technology (NIST) security levels I, III and V. So, if you’re interested in what the comparison
forNIST security level III would look like for unilaterally authenticated handshakes, skip ahead to section 4.1.

Future work

The NIST signature scheme on-ramp is days from formally kicking off, and none of the signature schemes
that have been put forward have yet made it into my comparisons. I am looking forward to the full list of
candidates, and I will be investigating their applicability to TLS. Do note that, based on prior experience
with the reference implementations of submissions in the post-quantum competition [23], I expect that it
will be a while before I will be able to report comprehensive benchmark results.
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1 Measuring post-quantumTLS on an emulated network

This text appears in chapter 10 in my PhD thesis manuscript.
In our experiments we use the example TLS client and server implementations provided by Rustls. We

modified the client to connect specified number of times instead of just once. We have also modified
the client and server implementations to, e.g., allow specifying cached certificates. We instrumented the
handshake implementations to print the number of nanoseconds that have elapsed, starting from either
sending or receiving the initial message until operations of interest for both the client and the server.

Part of the measurement setup is a script1 that prepares all the experiments we are interested in. As
the version of Rustls that our implementations are based on hard-codes the client’s default ephemeral
key-exchange algorithm, we replace the default based on our settings.2 We then simply compile the example
TLS server and client applications for every different key exchange method. We also generate the certificates
necessary for the experiment. To make sure all of this is reproducible, we execute all these steps in an
isolated Docker container.3 This fixes the Rust compiler version and isolates the compilation from the
host operating system. As Rust statically links binaries, we can use the binaries generated in the container
without having to be too careful about keeping in sync with a dynamically linked TLS library.

We follow the same methodology as [30] for setting up emulated networks.4 The measurements are
done using the Linux kernel’s network namespacing [9] and network emulation (NetEm) features [17].
We create network namespaces for the clients and the servers and create virtual network interfaces in

1Please refer to measuring/scripts/experiment.py in our experiment codebase.
2Refer to measuring/scripts/create-experimental-setup.sh.
3Refer to Dockerfile in the repository root.
4Refer to measuring/scripts/setup_ns.sh.
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those namespaces. We vary the latency and bandwidth of the emulated network. NetEm adds a latency
to the outgoing packets, so to add a latency of 𝑥ms, we add 𝑥/2ms of latency to the client and server
interfaces; following [30], we consider round-trip times (RTTs) of 30.9ms (representing an transcontinental
connection) and 195.5ms (representing a transpacific connection). We also throttle the bandwidth of the
virtual interfaces, considering both 1000Mbps and 10Mbps connections. We do not vary the packet loss
rate, fixing it at 0%.

We ran measurements on a server with two Intel Xeon Gold 6230 (Cascade Lake) CPUs, each featuring
20 physical cores, which gives us 80 hyperthreaded cores in total. For the measurements, we run 40 clients
and servers in parallel, such that each process has its own (hyperthreaded) core. We measured 20 000
handshakes for each scheme and set of network parameters.

We also report the sizes of the experimental handshakes. To obtain these numbers, we run the generated
TLS client and server with the certificates relevant to the handshake over localhost.5 We record and process
the transmitted TCP packets using tshark [42], and use a small Python script to extract the handshake
metrics.

1.1 Measured network scenarios

In our experiments on the emulated network, we simulate two network environments, following the choices
made in [30]. The first environment, which represents a high-bandwidth transcontinental connection, uses
a network round-trip latency of 30.9ms and a network bandwidth of 1000Mbps. The second environment
resembles a transpacific, low-bandwidth connection and uses a network round-trip latency of 195.5ms and
has a bandwidth of 10Mbps. We do not vary the packet loss rates, as this would mostly affect the results at
higher percentiles which we do not report.

2 Selecting algorithms for experiments

There are many post-quantumKEM and signature schemes that we could use for our experiments. We select
some instantiations that we think are interesting, which we will introduce in this section. As a baseline, we
use an instantiation based on elliptic-curveDiffie–Hellman (ECDH) andRSA. Wemainly use the algorithms
selected for standardization in the NIST post-quantum cryptography (PQC) standardization project, as
well as the remaining round-4 finalists for KEMs [1]. Separately from the NIST PQC standardization
project, NIST and the Internet Engineering Task Force (IETF) have already standardized stateful hash-
based signature schemes XMSS [14, 18] and LMS [14, 27]. These stateful hash-based signature schemes are
as conservative as SPHINCS+ but much smaller, so we will present some instantiations that make use of
XMSSMT . However, as their stateful nature makes them very sensitive to user error, we restrict their use to
certificate authority (CA) certificates. As XMSS only has standardized parameter sets at above NIST PQC
security level V, we selected customized parameters for use in CA certificates at the different security levels
in section 7.

2.1 Instantiations of post-quantum TLS 1.3

In each instantiation, we select:

1. an algorithm for ephemeral key exchange, negotiated by the TLS 1.3 client and server;

2. an algorithm for handshake authentication, used in the server’s certificate;

5Refer to measuring/scripts/measure-handshake-size.sh.

3



3. an algorithm for authentication of the server’s certificate by the (intermediate) CA certificate, which
we may assume the client to already have;

4. an algorithm to authenticate the intermediate CA certificate by a root CA certificate, which is always
assumed to be preinstalled.

For TLS handshakes that use mutual authentication, we additionally select:

5. an algorithm for client authentication, used in the client certificate;

6. an algorithm for authentication of the client certificate by a CA certificate, which is assumed to be
preinstalled.

In our experiments, we will try to showcase how algorithms in the NIST PQC standardization project
perform, as well as highlight how some careful choices for certificate algorithms can make large differences.
We will use the following scenarios:

Pre-quantum The pre-quantum instantiation uses X25519 [7] for key exchange and RSA-2048 [32] for all
signatures.

Primary For ephemeral key exchange, this instantiation uses Kyber [35], the only KEM which was selected
for standardization for post-quantum key exchange. Dilithium [26], the algorithm which, when it
was selected for standardization, was named the primary algorithm for post-quantum signatures, is
used for all signatures.

Falcon This instantiation uses Kyber for ephemeral key exchange, and Falcon [31] for all signatures. Falcon
was also selected for standardization by NIST but its use is not recommended unless its implemen-
tation concerns can be properly addressed: Falcon is very sensitive to side channels and requires
constant-time 64-bit floating-point operations for signing.

Falcon offline This instantiation uses Kyber for ephemeral key exchange and Dilithium for the (online)
handshake signatures of the server and, if mutually authenticating, the client. The CA signatures in
certificates are instantiated using Falcon. Because these can be produced offline by the CA, we can
assume they can mitigate all implementation concerns: signature verification does not have Falcon’s
implementation considerations.

SPHINCS+-f This instantiation uses Kyber for ephemeral key exchange. For all signatures SPHINCS+ [20]
is used, which is the only NIST selection for standardization that is not based on lattice assumptions.
Specifically, this instantiation uses the fast variant of SPHINCS+ , which has faster runtime but larger
signatures. For the hash function, we use Haraka, as explained in section 10.6.

SPHINCS+-s This instantiation is like the SPHINCS+-f-variant, but it uses the small variant of SPHINCS+ .
This variant requires more computation time for signing but has significantly smaller signatures.

Hash-based signatures This conservative instantiation usesKyber for ephemeral key exchange and SPHINCS+

for the handshake authentication signatures. To minimize the size, we use a custom instantiation
of XMSSMTat the appropriate NIST security level for the CA signatures. These instances, which we
label XMSSMTs , are described in section 7.

Hash-based CA This instantiation uses Kyber for key exchange and Dilithium for the handshake authenti-
cation signatures. To minimize the size, we use a custom instantiation of XMSSMTat the appropriate
NIST security level for the CA signatures.
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HQC This instantiation uses HQC, a round-4 KEM candidate in the NIST PQC standardization project,
for ephemeral key exchange. HQC relies on assumptions based on decoding of quasi-cyclic codes,
instead of on assumptions on lattices. For handshake authentication and CA signatures, Dilithium is
used.

Note that for presentation purposes, we will refer to these scenarios in our tables and figures by handles,
which are composed of the first letters of each of the selected algorithms (though X25519 is represented by
the letter ‘e’ for ECDH). As an example, we denote by KDDD the instantiation that uses Kyber for ephemeral
key exchange and uses Dilithium for server authentication and the intermediate and root CA certificates.
For an overview of these handles, refer to the tables that show the communication sizes, e.g. table 1.

The remaining candidates for post-quantum key exchange in round 4 of the NIST PQC standardiza-
tion project, are unfortunately not suitable for our experiments. BIKE [5] does not have IND-CCA-secure
parameters available, and the public keys of Classic McEliece [2] are too large to use in TLS 1.3.

Note that the use of intermediate CA certificates is not required. Alternatively, there exist proposals in
which the intermediate certificate can be cached: the client can then request intermediate CA certificates to
not be transferred [22]. To represent these scenarios, we will also show results for experiments that use the
intermediate certificate as the root certificate, and thus do not transmit or verify the root certificate.

3 Instantiation and results at NIST level I

We measured and compare the performance of TLS 1.3 at NIST security level I. This security level offers
security comparable to that given by AES-128. As it is the lowest security level, the parameter sets are the
most aggressively chosen. They generally offer the smallest public key, ciphertext, and signature sizes and
the shortest computation times. First, we will cover unilaterally authenticated handshakes, in which only
the server is authenticated by a certificate and a signature. This scenario is very important to the web, as
this is the handshake mode that is almost exclusively used by web browsers [10]. Afterward, we will discuss
mutually authenticated handshakes, in which the client also presents a certificate of their identity and signs
the handshake. Although this setting is not very relevant to web browsing, it is for example used to secure
service-to-service communication or in VPNs.

3.1 Unilaterally authenticated TLS 1.3

Communication requirements

In table 1, we show the communication sizes of our choices of instantiations. We also give the abbreviated
handles by which we will refer to the instantiations in other tables. We give the sum of the data necessary
for the ephemeral key exchange, the handshake authentication signature, and the leaf certificate, as this is
the minimum amount of data, excluding protocol overhead, that needs to be transferred if no intermediate
CA certificates are required. In these experiments, the intermediate CA certificate is assumed to be used as
the trusted root certificate. We also give the total amount of public key data that is transmitted when an
intermediate CA certificate is included.

Post-quantum ephemeral key exchange requires much more data than ECDH, and post-quantum signa-
tures have much larger public key and signature sizes than RSA-2048. Falcon is the smallest general-purpose
post-quantum signature scheme, while Dilithium is much larger. Finally, we see that the schemes that do
not rely on lattice assumptions are much larger than their lattice equivalents. Using HQC-128 instead of
Kyber-512 for key exchange requires 5162 additional bytes. The variants based on hash-based signatures
also require much more data. The only exception is our custom XMSS parameter set, which appears as an
attractive option to reduce the size of the certificate chain when used for CA certificates: using XMSSMTs -I
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Table 1: Instantiations at NIST level I of unilaterally authenticated post-quantum TLS handshakes and the
sizes of the public-key cryptography elements in bytes.

Leaf certificate Int. CA certificate Offline

Experiment Key Ex-
change

Handshake
auth.

Int. CA
signature

Int. CA
public key

Root CA
signature

Root CA
public key

handle pk+ct pk+sig sig Sum pk sig Sum pk

Pre-quantum X25519 RSA-2048 RSA-2048 848 RSA-2048 RSA-2048 1 376 RSA-2048
errr 64 528 256 272 256 272

Primary Kyber-512 Dilithium2 Dilithium2 7 720 Dilithium2 Dilithium2 11 452 Dilithium2
KDDD 1568 3732 2420 1312 2420 1312

Falcon Kyber-512 Falcon-512 Falcon-512 3 797 Falcon-512 Falcon-512 5 360 Falcon-512
KFFF 1568 1563 666 897 666 897

Falcon
offline

Kyber-512 Dilithium2 Falcon-512 5 966 Falcon-512 Falcon-512 7 529 Falcon-512

KDFF 1568 3732 666 897 666 897

SPHINCS+-f Kyber-512 SPHINCS+-
128f

SPHINCS+-
128f 35 776

SPHINCS+-
128f

SPHINCS+-
128f 52 896

SPHINCS+-
128f

KSfSfSf 1568 17 120 17 088 32 17 088 32

SPHINCS+-s Kyber-512 SPHINCS+-
128s

SPHINCS+-
128s 17 312

SPHINCS+-
128s

SPHINCS+-
128s 25 200

SPHINCS+-
128s

KSsSsSs 1568 7888 7856 32 7856 32

Hash-based
signatures

Kyber-512 SPHINCS+-
128s

XMSSMTs -I
10 435

XMSSMTs -I XMSSMTs -I
11 446

XMSSMTs -I

KSsXX 1568 7888 979 32 979 32

HBS-CA Kyber-512 Dilithium2 XMSSMTs -I 6 279 XMSSMTs -I XMSSMTs -I 7 290 XMSSMTs -I
KDXX 1568 3732 979 32 979 32

HQC HQC-128 Dilithium2 Dilithium2 12 882 Dilithium2 Dilithium2 16 614 Dilithium2
HDDD 6730 3732 2420 1312 2420 1312
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in place of SPHINCS+-128s saves 6877 bytes of data (87.5%). Using XMSSMTs -I in place of Dilithium2 saves
1441 bytes of data (59.5%).

Computational requirements

In table 2, we compare the amount of computation that each combination of algorithms requires. The
amount given for client operations is the sum of the key generation and decapsulation operations for the
ephemeral key exchange, the verification time of the handshake signature, the verification time for the
leaf certificate, and if an intermediate certificate is transmitted, the verification time of the intermediate
certificate. For reference, the time of individual key-generation, signing, verification, encapsulation, and
decapsulation operations are given in tables 10.1 and 10.2.

Table 2: Computation time inms for asymmetric cryptography at NIST level I for each of the unilaterally
authenticated post-quantum TLS instantiations at the client and server.

Handle
Intermediate cert. as root With intermediate CA cert.

Client Server Sum Client Server Sum

errr 0.134 0.629 0.763 0.150 0.629 0.779
KDDD 0.166 0.204 0.370 0.230 0.204 0.434
KFFF 0.320 0.668 0.988 0.461 0.668 1.129
KDFF 0.243 0.204 0.447 0.384 0.204 0.588
KSfSfSf 0.924 5.544 6.468 1.367 5.544 6.911
KSsSsSs 0.218 60.542 60.760 0.308 60.542 60.850
KSsXX 8.360 60.542 68.902 16.592 60.542 77.134
KDXX 8.334 0.204 8.538 16.566 0.204 16.770
HDDD 0.461 0.317 0.778 0.525 0.317 0.842

Comparing the lattice-based experiments KDDD and KFFF with the pre-quantum errr instantiation,
it is evident that while post-quantum cryptography may be bigger, it is not necessarily also slower: KFFF
performs comparable with errr, while KDDD uses much less computation time. However, this does not
hold for all schemes. While HQC requires only slightly more computation time than the Kyber-based
experiment, the experiments that use hash-based signatures require much more time. But also between
the hash-based schemes there exist large differences. The smaller variant of SPHINCS+ requires vastly
more computation: to produce the handshake signature with SPHINCS+-128s instead of SPHINCS+-128f
requires 54.998msmore computation (90.9%). Our custom XMSSMTs -I parameters have been tuned for as
small a signature as possible, and this is also clearly visible in the computation time: the cost of verifying
XMSS signatures adds significantly to the client’s computation time.

Handshake performance

In table 3, we can see the average times taken in the handshakes instantiated with our selected algorithms for
a high-bandwidth, low-latency connection, using a latency of 30.9ms and a 1000Mbps link speed. We again
give times for when the intermediate CA certificate algorithm is not transmitted and thus used as a root CA
certificate, and for the scenario in which the intermediate CA does need to be transmitted and verified. In
our experiments, we assume an HTTP-like scenario in which the client requests some data from the server,
so the server needs to receive the client’s request before it can start transmitting application traffic. In each
of these scenarios, we give the amount of time until the client is ready to send a request (i.e., in TLS 1.3,
the client has received ServerFinished and sent ClientFinished), the time until the client receives the
response to its request from the server, and the time until the server has completed the handshake (i.e.,
in TLS 1.3, received ClientFinished). Note that the timers of the client and the server are independent,
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Table 3: Average handshake times in ms for unilaterally authenticated post-quantum TLS experiments
at NIST level I with 30.9ms latency and 1000Mbps bandwidth. Server and client timers are
independent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

errr 65.9 97.0 35.0 66.1 97.2 35.2
KDDD 63.6 94.8 32.7 63.9 95.0 33.0
KFFF 64.6 95.8 33.7 65.0 96.1 34.0
KDFF 63.7 94.8 32.8 64.0 95.2 33.1
KSfSfSf 106.4 137.6 75.5 136.9 168.1 106.0
KSsSsSs 166.7 197.7 135.8 166.9 198.0 136.0
KSsXX 155.5 186.6 124.6 171.1 202.1 140.1
KDXX 97.2 128.3 66.2 113.7 144.8 82.8
HDDD 63.6 94.7 32.7 63.9 95.1 33.0

Table 4: Average handshake times inms for unilaterally authenticated post-quantum TLS experiments at
NIST level I with 195.5ms latency and 10Mbps bandwidth. Server and client timers are indepen-
dent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

errr 397.1 593.1 201.3 397.7 593.7 201.8
KDDD 405.5 602.8 208.8 410.3 610.0 212.8
KFFF 397.3 593.3 200.8 399.5 595.5 203.0
KDFF 398.7 594.7 202.2 405.6 602.8 208.8
KSfSfSf 1177.3 1544.4 963.5 1751.4 2038.1 1524.6
KSsSsSs 914.0 1116.4 715.3 979.2 1217.9 772.5
KSsXX 530.6 735.6 331.2 564.9 776.6 364.9
KDXX 446.9 648.1 240.6 475.4 679.7 266.1
HDDD 405.5 602.7 208.7 410.5 610.1 212.9
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and start counting as soon as the ClientHello message is constructed (for the client) or received (for the
server).

For the instantiations that use pre-quantum cryptography, or any combination of the fast algorithms
Kyber-512, HQC-128, Dilithium2, and Falcon-512, we see that the handshake times are roughly a multiple of
the connection latency. The client can transmit its request after two times the handshake latency, which
matches the two round-trips necessary: one for the TCP connection establishment, and the single round-
trip in which the TLS handshake is completed. The response is received in the return round-trip after
sending off the request. The server receives ClientFinished and thus completes its part of the handshake a
single round-trip after transmitting the ServerFinished packet. The computational requirements of these
algorithms on the chosen platforms are so small that they do not meaningfully contribute to the connection
establishment times. With the connection parameters in this experiment, the additional amounts of traffic
required for Dilithium2 compared to Falcon-512 or HQC-128 compared to Kyber-512 do not meaningfully
contribute to the handshake time.

In the KDXX parameter set which uses XMSSMTs -I for the CA certificates to reduce the amount of
handshake traffic, the additional computation time required to verify the XMSS signatures adds significantly
to the handshake time. The additional latency for the experiment in which the root CA is omitted, compared
to the KDDD experiment, is more than the 8.2ms that are required on average to verify the XMSSMTs -I
signature on the server’s leaf certificate. We suspect this happens because the additional verification time
interacts with the TCP congestion control algorithms. We see a similar delay in the KSsSsSs parameter set,
but this instantiation additionally suffers from the larger amount of bytes that need to be transmitted. The
amount of data for this selection of algorithms exceeds the initial congestion window (initcwnd) set in
the TCP slow start algorithm [11], which is the initial limit on the amount of data (measured in maximum
segment size (MSS)) that can be sent on a TCP connection before receiving an acknowledgment packet. The
default initcwnd on Linux is 10MSS, which means that after transmitting about 14.5 kB, the server needs
to wait for the client to acknowledge the packets that it has received before it will send more. This induces
extra round-trip delays. As the instance using SPHINCS+-128f has very large certificates due to the large
signature size of SPHINCS+-128f, these extra round-trips slow down the connection establishment despite
the much faster signing time compared to SPHINCS+-128s. Still, for this high-bandwidth, low-latency
connection, the SPHINCS+-128f instance is much faster than any instance using SPHINCS+-128s: the
computational requirements are just too large compared to the communication overhead. When including
the intermediate CA certificate, KSfSfSf requires 29.9ms (15.1%) less time than KSsSsSs before the client
receives the server’s response.

In table 4, we compare the same metrics for experiments on a high-latency, low-bandwidth connection,
using a latency of 195.5ms latency and 10Mbps connection bandwidth. With these connection charac-
teristics, we see that the sizes of the public keys, ciphertexts, and signatures start to matter more. KFFF,
which has the smallest sum of public-key cryptography objects, has the best performance, coming very
close to the performance of the pre-quantum errr instantiation. Comparatively, KDDD, which suffers
from the much larger Dilithium2 public keys and signatures, has higher connection establishment times.
When including the intermediate CA certificate, KDDD takes an additional 16.3ms (2.7%) before the client
receives the response from the server, compared to the pre-quantum instance. The performance of the
Kyber-512/SPHINCS+-128f instantiation KSfSfSf again clearly suffers under the weight of SPHINCS+-128f
signatures, now showing the worst performance of all parameter sets.

The two instantiations that use Kyber-512 and Dilithium2 for the online components of the TLS 1.3
handshake, but rely on different algorithms for CA certificates, KDFF and KDXX, appear promising: by
reducing the amount of handshake traffic, they perform fairly reasonably well (though the performance
of XMSSMTs -I still hurts KDXX). Especially KDFF, a combination of two to-be-standardized algorithms,
seems to combine the best of both worlds: using Dilithium2 for the online handshake authentication avoids
the implementation concerns associated with Falcon-512 signature generation while offering performance
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on par with the all-Falcon KFFF instantiation but even KDXX is only slightly slower.

3.2 Mutually authenticated TLS 1.3

Communication requirements

Table 5 shows the precise selection of algorithms for our instantiations of mutually authenticated post-
quantum TLS 1.3. Like for the unilaterally authenticated instantiations, we also show the sizes of the
public-key cryptographic elements necessary for ephemeral key exchange, server authentication, and client
authentication, and the total. (For a better presentation, we only show the sum of the size of the public key
and the signature that are part of each certificate, even if they use different algorithms). Again, we examine
two scenarios for each instantiation, one that omits an intermediate CA certificate (and thus uses it as the
trusted root certificate) and one that makes use of intermediate CA certificates, transmitting them during
the handshake.

The difference in size between the unilaterally authenticated handshakes in table 1 and the mutually
authenticated handshakes is exactly the number of bytes listed in the client authentication column. As the
size of the Kyber-512 key exchange is much smaller than the sum of a public key and signature used in most
of our instantiations, we roughly double the sizes of the handshakes when omitting intermediate certificates.

Computational requirements

Table 6 shows the amount of computation required for the cryptographic operations using the algorithms in
our instantiations. As the client and the server now both need to produce a signature during the handshake
and verify a certificate chain, they need to perform the same amount of work when an intermediate CA
certificate is not used. Otherwise, the client needs to additionally verify this certificate. As signing is much
more expensive than verifying for most algorithms, we see that the total computational load roughly doubles
compared to the unilaterally authenticated experiments.

Handshake performance

In tables 7 and 8, we show the performance of our instantiations of the mutually authenticated TLS 1.3
running on a 30.9ms latency, 1000Mbps network and on a 195.5ms latency, 10Mbps network. Note that
even though the transmission size of some of the instances, when including client authentication, exceeds
15 kB, we point out that the initial congestion window is not shared between the client and the server: thus
the client is free to send as much data as it can fit in its congestion window regardless of the size of the
server’s certificate. Furthermore, the client needs to fully receive the server’s certificate and verify the server’s
handshake signature before it may send the client certificate. This means that TCP congestion control has a
chance to catch up and the client’s certificate size does not contribute as much to the connection congestion;
unlike the server’s certificate which is all sent out immediately as the connection is established. Additionally,
as the client sends out its request immediately after it transmits its certificate, the server first needs to
process the client certificate before it can process the client request. This is visible in our measurements
as an increased gap between the client sending its request and receiving the response. We see that large
certificates, such as in the instance based on SPHINCS+-128f, especially contribute to longer waiting times
before the client receives its response from the server. The KSfSfSf-SfSf experiment is 44.8ms (32.6%)
slower than the unilaterally authenticated KSfSfSf experiment when omitting intermediate CA certificates
on the low-latency network. On the slow network, comparing the same two SPHINCS+-128f experiments
shows a 452.7ms (29.3%) difference. Note that the relative difference is very similar (while naively we
would expect the larger size to take longer), which is due to the TCP congestion control algorithm already
having had a chance to scale the client’s bandwidth before the client certificate is transmitted: the large
server certificate results in acknowledgments being sent out that influence congestion control.
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Table 5: Instantiations at NIST level I of mutually authenticated post-quantum TLS experiments and the
sizes of the public-key cryptography elements transmitted in bytes.

Experiment
handle

Key
exchange

Server
authentication

Client
authentication

Sum Int. CA
certificate

Sum

Pre-quantum X25519 hs:RSA-2048
sig:RSA-2048

hs:RSA-2048
sig:RSA-2048

pk:RSA-2048
sig:RSA-2048

errr-rr 64 784 784
1 632

528
2 160

Primary Kyber-512 hs:Dilithium2
sig:Dilithium2

hs:Dilithium2
sig:Dilithium2

pk:Dilithium2
sig:Dilithium2

KDDD-DD 1568 6152 6152
13 872

3732
17 604

Falcon Kyber-512 hs:Falcon-512
sig:Falcon-512

hs:Falcon-512
sig:Falcon-512

pk:Falcon-512
sig:Falcon-512

KFFF-FF 1568 2229 2229
6 026

1563
7 589

Falcon offline Kyber-512 hs:Dilithium2
sig:Falcon-512

hs:Dilithium2
sig:Falcon-512

pk:Falcon-512
sig:Falcon-512

KDFF-DF 1568 4398 4398
10 364

1563
11 927

SPHINCS+-f Kyber-512 hs:SPHINCS+-128f
sig:SPHINCS+-128f

hs:SPHINCS+-128f
sig:SPHINCS+-128f

pk:SPHINCS+-128f
sig:SPHINCS+-128f

KSfSfSf-SfSf 1568 34 208 34 208
69 984

17 120
87 104

SPHINCS+-s Kyber-512 hs:SPHINCS+-128s
sig:SPHINCS+-128s

hs:SPHINCS+-128s
sig:SPHINCS+-128s

pk:SPHINCS+-128s
sig:SPHINCS+-128s

KSsSsSs-SsSs 1568 15 744 15 744
33 056

7888
40 944

Hash-based
signatures

Kyber-512 hs:SPHINCS+-128s
sig:XMSSMTs -I

hs:SPHINCS+-128s
sig:XMSSMTs -I

pk:XMSSMTs -I
sig:XMSSMTs -I

KSsXX-SsX 1568 8867 8867
19 302

1011
20 313

HBS-CA Kyber-512 hs:Dilithium2
sig:XMSSMTs -I

hs:Dilithium2
sig:XMSSMTs -I

pk:XMSSMTs -I
sig:XMSSMTs -I

KDXX-DX 1568 4711 4711
10 990

1011
12 001

HQC HQC-128 hs:Dilithium2
sig:Dilithium2

hs:Dilithium2
sig:Dilithium2

pk:Dilithium2
sig:Dilithium2

HDDD-DD 6730 6152 6152
19 034

3732
22 766

hs: certificate public key and handshake signature
pk: certificate public key sig: certificate signature
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Table 6: Computation time in ms for asymmetric cryptography at NIST level I for each of the mutually
authenticated post-quantum TLS instantiations at the client and server.

Handle
Intermediate cert. as root With intermediate CA cert.

Client Server Sum Client Server Sum

errr-rr 0.660 0.661 1.321 0.676 0.661 1.337
KDDD-DD 0.344 0.332 0.676 0.408 0.332 0.740
KFFF-FF 0.962 0.950 1.912 1.103 0.950 2.053
KDFF-DF 0.421 0.409 0.830 0.562 0.409 0.971
KSfSfSf-SfSf 6.442 6.430 12.872 6.885 6.430 13.315
KSsSsSs-SsSs 60.734 60.722 121.456 60.824 60.722 121.546
KSsXX-SsX 68.876 68.864 137.740 77.108 68.864 145.972
KDXX-DX 8.512 8.500 17.012 16.744 8.500 25.244
HDDD-DD 0.639 0.445 1.084 0.703 0.445 1.148
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Table 7: Average handshake times inms for mutually authenticated post-quantum TLS experiments at NIST
level I with 30.9ms latency and 1000Mbps bandwidth. Server and client timers are independent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

errr-rr 68.9 100.3 38.3 68.9 100.4 38.3
KDDD-DD 64.2 95.8 33.7 64.4 96.0 34.0
KFFF-FF 66.1 97.9 35.8 66.4 98.2 36.1
KDFF-DF 64.2 96.0 33.9 64.6 96.3 34.2
KSfSfSf-SfSf 117.8 182.3 120.2 148.2 212.8 150.7
KSsSsSs-SsSs 247.9 310.1 248.2 248.2 310.5 248.5
KSsXX-SsX 213.1 254.8 192.9 221.4 263.1 201.2
KDXX-DX 98.7 160.2 98.2 113.4 170.5 108.5
HDDD-DD 64.2 95.8 33.8 64.5 96.1 34.1

Table 8: Average handshake times inms for mutually authenticated post-quantum TLS experiments at NIST
level I with 195.5ms latency and 10Mbps bandwidth. Server and client timers are independent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

errr-rr 399.9 597.2 205.2 401.0 598.4 206.1
KDDD-DD 404.5 606.9 212.9 412.0 617.7 217.9
KFFF-FF 399.1 597.8 205.3 402.8 601.6 208.8
KDFF-DF 399.8 599.9 207.3 405.1 606.2 211.7
KSfSfSf-SfSf 1224.6 1997.1 1397.7 1598.9 2339.3 1660.3
KSsSsSs-SsSs 849.3 1292.2 877.1 864.8 1296.9 873.4
KSsXX-SsX 583.5 801.8 398.5 594.9 812.3 406.9
KDXX-DX 440.4 671.2 272.1 463.5 692.3 292.1
HDDD-DD 403.2 605.5 211.8 411.3 616.7 217.2
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4 Instantiation and results at NIST level III

In this section, we measure and compare the performance of TLS 1.3 at NIST PQC security level III. This
security level corresponds to, roughly, AES-192 in terms of security. This category is significant, as, among
others, the authors of Kyber and Dilithium have recommended using the level-III instantiations of their
schemes [15, 24]. Again, we first examine unilaterally authenticated handshakes, before we look at mutually
authenticated handshakes.

4.1 Unilaterally authenticated TLS 1.3

Table 9: Instantiations at NIST level III of unilaterally authenticated post-quantum TLS handshakes and
the sizes of the public-key cryptography elements in bytes.

Leaf certificate Int. CA certificate Offline

Experiment Key Ex-
change

Handshake
auth.

Int. CA
signature

Int. CA
public key

Root CA
signature

Root CA
public key

handle pk+ct pk+sig sig Sum pk sig Sum pk

Pre-quantum X25519 RSA-2048 RSA-2048 848 RSA-2048 RSA-2048 1 376 RSA-2048
errr 64 528 256 272 256 272

Primary Kyber-768 Dilithium3 Dilithium3 10 810 Dilithium3 Dilithium3 16 055 Dilithium3
KDDD 2272 5245 3293 1952 3293 1952

Falcon Kyber-768 Falcon-1024 Falcon-
1024 6 625 Falcon-

1024
Falcon-
1024 9 698 Falcon-

1024
KFFF 2272 3073 1280 1793 1280 1793

Falcon
offline

Kyber-768 Dilithium3 Falcon-
1024 8 797 Falcon-

1024
Falcon-
1024 11 870 Falcon-

1024
KDFF 2272 5245 1280 1793 1280 1793

SPHINCS+-f Kyber-768 SPHINCS+-
192f

SPHINCS+-
192f 73 648

SPHINCS+-
192f

SPHINCS+-
192f 109 360

SPHINCS+-
192f

KSfSfSf 2272 35 712 35 664 48 35 664 48

SPHINCS+-s Kyber-768 SPHINCS+-
192s

SPHINCS+-
192s 34 768

SPHINCS+-
192s

SPHINCS+-
192s 51 040

SPHINCS+-
192s

KSsSsSs 2272 16 272 16 224 48 16 224 48

Hash-based
signatures

Kyber-768 SPHINCS+-
192s

XMSSMTs -
III 20 395

XMSSMTs -
III

XMSSMTs -
III 22 294

XMSSMTs -
III

KSsXX 2272 16 272 1851 48 1851 48

HBS-CA Kyber-768 Dilithium3 XMSSMTs -
III 9 368 XMSSMTs -

III
XMSSMTs -
III 11 267 XMSSMTs -

III
KDXX 2272 5245 1851 48 1851 48

HQC HQC-192 Dilithium3 Dilithium3 22 086 Dilithium3 Dilithium3 27 331 Dilithium3
HDDD 13 548 5245 3293 1952 3293 1952

Communication requirements

In table 9, we show the communication sizes of our choices of instantiations. Comparing the instantiations
with those at NIST level I, we see that the sizes become significantly larger across all schemes used in the
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instantiations. For example, Kyber-768 requires 704 bytes (44.9%) more transmission. As Dilithium2,
which we used in our level-I experiments, already has security level II, we see amodest increase of 1513 bytes
(40.5%) for its public key and signature combined. For all of the other schemes, we get around 50% increase
in sizes; though it should be noted that Falcon-1024 offers NIST security level V.

Table 10: Computation time inms for asymmetric cryptography at NIST level III for each of the unilaterally
authenticated post-quantum TLS instantiations at the client and server.

Handle
Intermediate cert. as root With intermediate CA cert.

Client Server Sum Client Server Sum

errr 0.134 0.629 0.763 0.150 0.629 0.779
KDDD 0.203 0.830 1.033 0.284 0.830 1.114
KFFF 0.385 0.813 1.198 0.557 0.813 1.370
KDFF 0.294 0.830 1.124 0.466 0.830 1.296
KSfSfSf 0.841 6.261 7.102 1.241 6.261 7.502
KSsSsSs 0.311 118.885 119.196 0.446 118.885 119.331
KSsXX 12.075 118.885 130.960 23.974 118.885 142.859
KDXX 12.021 0.830 12.851 23.920 0.830 24.750
HDDD 1.190 1.263 2.453 1.271 1.263 2.534

Computational requirements

When comparing the computation requirements of these instantiations as listed in table 10, we see that
although instances based on the lattice-based schemes Kyber, Dilithium, and Falcon see significant increases
in computation time (Falcon takes about two times as much time), they still do not require much more time
than the original pre-quantum instantiation using X25519 and RSA-2048. The two SPHINCS+-192 variants
also take around twice as much time, but as the amount of time taken was already quite large, we now see
the server requires over 100ms just for cryptographic computations in the instances using SPHINCS+-192s
for handshake authentication.

Handshake performance

This comes together in the average handshake timings shown in tables 11 and 12. Comparing the computation
times, we see that the KFFF instance performs slightly worse than the KDDD instance. Otherwise, we see
that the instances largely follow the pattern established in the level-I experiments.

For the high-bandwidth connection, we see that again the sizes largely do not matter for all instantiations
that stay under the limits of the TCP slow start algorithm. However, at NIST security level III, more
instantiations now do exceed this limit. In the KDDD and HDDD instances in which an intermediate CA
certificate is transferred, the penalty of an additional round-trip can be seen in the connection establishment
times due to the large size of the certificates exceeding the approximately 14.5 kB congestion window
transmission limit. When the intermediate CA certificate is used as root CA certificate, the ServerCertifi-
cate stays under the limit and the penalty is avoided.

In the experiments using the variants of SPHINCS+-192, we see that the large sizes of the public keys
and certificates affect the handshake performance. The SPHINCS+-192s handshake has large increases
in the handshake times as both the computation time and amount of data increase dramatically. The
SPHINCS+-192f handshake experiment including an intermediate CA certificate on the 30.9ms latency,
1000Mbps network takes 41.7ms (24.8%) longer before the client received the response at level III than at
level I, much more than the increase in computation time. Note that the handshake time did not increase
linearly with the 55 760 bytes (108.6%) increase of the SPHINCS+-192f public keys and signatures. The TCP
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Table 11: Average handshake times in ms for unilaterally authenticated post-quantum TLS experiments
at NIST level III with 30.9ms latency and 1000Mbps bandwidth. Server and client timers are
independent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

errr 65.9 97.0 35.0 66.1 97.2 35.2
KDDD 64.0 95.1 33.1 94.6 125.8 63.7
KFFF 66.5 97.6 35.5 67.0 98.1 36.0
KDFF 64.3 95.4 33.3 65.0 96.1 34.0
KSfSfSf 145.6 176.7 114.6 178.5 209.7 147.6
KSsSsSs 215.3 246.3 184.4 248.1 279.2 217.2
KSsXX 223.3 254.3 192.3 231.9 262.9 201.0
KDXX 103.5 134.6 72.6 117.1 148.1 86.1
HDDD 64.0 95.2 33.1 94.6 125.8 63.7

Table 12: Average handshake times in ms for unilaterally authenticated post-quantum TLS experiments
at NIST level III with 195.5ms latency and 10Mbps bandwidth. Server and client timers are
independent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

errr 397.1 593.1 201.3 397.7 593.7 201.8
KDDD 409.1 607.6 211.6 881.0 1077.0 674.2
KFFF 401.3 597.3 204.8 428.2 631.1 229.5
KDFF 403.2 599.9 206.5 413.6 613.3 215.4
KSfSfSf 2028.4 2510.0 1713.2 3427.2 3814.2 3147.7
KSsSsSs 1156.5 1490.4 938.0 1776.4 2044.8 1553.1
KSsXX 869.0 1083.5 666.6 876.9 1098.1 672.4
KDXX 456.1 659.4 249.7 495.2 703.7 282.2
HDDD 408.4 606.8 211.1 881.0 1077.0 674.2
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congestion control algorithm increases the transmission window, and thus available bandwidth, as more
packets get acknowledged. In the same experiment running over the 195.5ms latency, 10Mbps network,
we see that the increase in handshake time in the same experiment is 87.1%. This is much more in line
with the increase in data that is transmitted, due to the lower connection bandwidth.

As the sizes of the handshakes go up, the benefits increase of choosing the algorithms for CA certificates
such that the sizes are minimized. The KDFF instance is the best-performing post-quantum instance on
the fast network when an intermediate certificate is transferred, balancing the computational speed of
Dilithium3 with the smaller key sizes of Falcon-1024. On the low-bandwidth network, the size of Dilithium3
is too large to keep up with the KFFF instance, and the larger size slows down the handshake time more
than the increase in Falcon’s computational requirements: KDFF takes 17.8ms (2.8%) longer before the
client response is received. Even the KDXX instance, which uses the slow-to-verify XMSSMTs -III scheme in
the CA certificates, performs better than KDDD when intermediate CA certificates are used, showing the
impact of the transmission overhead on low-bandwidth networks.

4.2 Mutually authenticated TLS 1.3

Communication requirements

In table 13, we show the communication requirements of our instantiationswhen usingmutual authentication.
As with the server authentication requirements in the unilaterally authenticated handshakes, the sizes of the
public keys and signatures required for client authentication grow significantly. Already, no post-quantum
instantiation has a total handshake size under 10 000 B when excluding intermediate CA certificates, and
when including them, only the Falcon-1024-based KFFF-FF instance is just below 15 kB

Computational requirements

Table 14 shows the computational requirements for the server and the client. We see that using SPHINCS+-
192s for client authentication comes with a very significant computational cost, which now exceeds 100ms
for both the client and the server. We note that although TLS servers are often powerful computers that
have stable power supplies, such computational overhead may have significant effects on the battery life of
devices such as smartphones.

Handshake performance

Lastly, in tables 7 and 8, we show the handshake performance for mutually authenticated post-quantum
TLS 1.3 handshakes at NIST security level III. For most instantiations, for the same reasons as in the
unilaterally authenticated experiments, we do not see large differences between the results at the level I and
level III security levels. Comparing the SPHINCS+-192f-based instantiation to its level I instantiation when
running on the 195.5ms latency, 10Mbps network shows that it takes 1809.6ms (90.6%) longer before
the client receives its response than the level I instance using SPHINCS+-128f (omitting intermediate CA
certificates). The increase in size greatly affects the handshake performance on the low-bandwidth network.

On the high-bandwidth, low-latency network, the KSsXX-SsX instance got 170.2ms (66.8%) slower going
from security level I to level III, while the unilaterally authenticated KSsXX instance got 67.7ms (36.3%)
slower between the two security levels. On the high-latency, low-bandwidth network, this gap grows: the
mutually authenticated instance was 552.4ms (68.9%) slower while the unilaterally authenticated instance
was only 347.9ms (47.3%) slower. Somehow the combination of the increase in computational overhead
and handshake size adds multiple round-trips worth of latency to the post-quantum TLS 1.3 handshake.
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Table 13: Instantiations at NIST level III of mutually authenticated post-quantum TLS experiments and the
sizes of the public-key cryptography elements transmitted in bytes.

Experiment
handle

Key
exchange

Server
authentication

Client
authentication

Sum Int. CA
certificate

Sum

Pre-quantum X25519 hs:RSA-2048
sig:RSA-2048

hs:RSA-2048
sig:RSA-2048

pk:RSA-2048
sig:RSA-2048

errr-rr 64 784 784
1 632

528
2 160

Primary Kyber-768 hs:Dilithium3
sig:Dilithium3

hs:Dilithium3
sig:Dilithium3

pk:Dilithium3
sig:Dilithium3

KDDD-DD 2272 8538 8538
19 348

5245
24 593

Falcon Kyber-768 hs:Falcon-1024
sig:Falcon-1024

hs:Falcon-1024
sig:Falcon-1024

pk:Falcon-1024
sig:Falcon-1024

KFFF-FF 2272 4353 4353
10 978

3073
14 051

Falcon offline Kyber-768 hs:Dilithium3
sig:Falcon-1024

hs:Dilithium3
sig:Falcon-1024

pk:Falcon-1024
sig:Falcon-1024

KDFF-DF 2272 6525 6525
15 322

3073
18 395

SPHINCS+-f Kyber-768 hs:SPHINCS+-192f
sig:SPHINCS+-192f

hs:SPHINCS+-192f
sig:SPHINCS+-192f

pk:SPHINCS+-192f
sig:SPHINCS+-192f

KSfSfSf-SfSf 2272 71 376 71 376
145 024

35 712
180 736

SPHINCS+-s Kyber-768 hs:SPHINCS+-192s
sig:SPHINCS+-192s

hs:SPHINCS+-192s
sig:SPHINCS+-192s

pk:SPHINCS+-192s
sig:SPHINCS+-192s

KSsSsSs-SsSs 2272 32 496 32 496
67 264

16 272
83 536

Hash-based
signatures

Kyber-768 hs:SPHINCS+-192s
sig:XMSSMTs -III

hs:SPHINCS+-192s
sig:XMSSMTs -III

pk:XMSSMTs -III
sig:XMSSMTs -III

KSsXX-SsX 2272 18 123 18 123
38 518

1899
40 417

HBS-CA Kyber-768 hs:Dilithium3
sig:XMSSMTs -III

hs:Dilithium3
sig:XMSSMTs -III

pk:XMSSMTs -III
sig:XMSSMTs -III

KDXX-DX 2272 7096 7096
16 464

1899
18 363

HQC HQC-192 hs:Dilithium3
sig:Dilithium3

hs:Dilithium3
sig:Dilithium3

pk:Dilithium3
sig:Dilithium3

HDDD-DD 13 548 8538 8538
30 624

5245
35 869

hs: certificate public key and handshake signature
pk: certificate public key sig: certificate signature
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Table 14: Computation time inms for asymmetric cryptography at NIST level III for each of the mutually
authenticated post-quantum TLS instantiations at the client and server.

Handle
Intermediate cert. as root With intermediate CA cert.

Client Server Sum Client Server Sum

errr-rr 0.660 0.661 1.321 0.676 0.661 1.337
KDDD-DD 1.006 0.992 1.998 1.087 0.992 2.079
KFFF-FF 1.171 1.157 2.328 1.343 1.157 2.500
KDFF-DF 1.097 1.083 2.180 1.269 1.083 2.352
KSfSfSf-SfSf 7.075 7.061 14.136 7.475 7.061 14.536
KSsSsSs-SsSs 119.169 119.155 238.324 119.304 119.155 238.459
KSsXX-SsX 130.933 130.919 261.852 142.832 130.919 273.751
KDXX-DX 12.824 12.810 25.634 24.723 12.810 37.533
HDDD-DD 1.993 1.425 3.418 2.074 1.425 3.499

19



Table 15: Average handshake times inms formutually authenticated post-quantumTLS experiments at NIST
level III with 30.9ms latency and 1000Mbps bandwidth. Server and client timers are independent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

errr-rr 68.9 100.3 38.3 68.9 100.4 38.3
KDDD-DD 64.9 96.6 34.6 95.4 127.2 65.1
KFFF-FF 69.1 101.4 39.4 69.8 102.2 40.1
KDFF-DF 65.1 97.2 35.2 65.7 97.8 35.8
KSfSfSf-SfSf 166.1 261.4 199.3 198.1 293.5 231.3
KSsSsSs-SsSs 361.6 424.3 362.4 396.4 459.2 397.2
KSsXX-SsX 362.7 425.0 363.1 364.2 426.6 364.6
KDXX-DX 105.6 176.0 114.0 117.7 181.5 119.5
HDDD-DD 64.9 96.7 34.6 95.4 127.2 65.1

Table 16: Average handshake times inms formutually authenticated post-quantumTLS experiments atNIST
level III with 195.5ms latency and 10Mbps bandwidth. Server and client timers are independent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

errr-rr 399.9 597.2 205.2 401.0 598.4 206.1
KDDD-DD 409.2 615.6 219.0 795.3 1067.3 559.5
KFFF-FF 404.1 605.1 212.6 410.1 612.3 217.0
KDFF-DF 404.6 607.5 213.3 411.2 616.5 217.6
KSfSfSf-SfSf 2198.3 3806.7 2982.4 3571.3 5450.1 4575.4
KSsSsSs-SsSs 1130.8 1682.2 1178.4 1466.6 2050.8 1489.1
KSsXX-SsX 918.9 1354.2 934.7 926.3 1359.7 939.4
KDXX-DX 459.4 707.9 301.5 496.0 744.6 325.5
HDDD-DD 408.9 615.4 218.8 788.7 1055.5 547.4
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5 Instantiation and results at NIST level V

In this section, we examine the characteristics of post-quantum TLS instances at NIST PQC security level V.
This is the most conservative security level and should offer comparable security to AES-256. This security
level is required by the United States National Security Agency (NSA)’s Commercial National Security
Algorithm Suite 2.0 [29]. The French national cybersecurity agency agence nationale de la sécurité des
systèmes d’information (ANSSI) also recommends security level V [3]. As the most conservative parameter
sets, these are generally the largest and slowest-running algorithms to instantiate post-quantum TLS 1.3
with. As such, it will be challenging to instantiate TLS with these algorithms without affecting performance
significantly.

5.1 Unilaterally authenticated TLS 1.3

Communication requirements

In table 17, we show the communication sizes of our choices of instantiations. This level has the most
conservative security guarantees, and as such the largest key sizes and computational requirements. If
we compare the sums of the public-key cryptography elements that need to be transmitted, we see that
even when leaving out the intermediate CA certificates, all but the KFFF instance exceed 10 kB. When
we compare the sums including the intermediate CA certificate, all but KFFF and KDFF exceed 15 kB.
SPHINCS+-256f even exceeds 150 kB.

Computational requirements

When we compare the computation time that is necessary for the public-key cryptography operations
at level V in table 18 with the level III requirements, it seems that the increase is less than going from
level I to level III. Although HQC-256 requires 0.571ms (38.4%) more time than HQC-192, Kyber-1024
only requires 0.052ms (76.5%) more than Kyber-768. Dilithium5’s signing time is almost identical to
Dilithium3’s. Falcon-1024, which we used in our level III experiments, already has security level V. The
hash-based schemes SPHINCS+ and XMSSMTs use the same hash primitives for level III and level V, but
they truncate the output of the hash function to 192 bytes at level III, while obtaining 256 bytes at level V.
SPHINCS+-256s additionally has a slightly differently shaped tree, which optimizes differently for signing
and verification time. The performance of these schemes is thus very similar at level III and V, with
SPHINCS+-256s signing being slightly faster than SPHINCS+-192s.

Handshake performance

In tables 19 and 20, we show the handshake times for the instantiations at NIST security level V. In the results
for the instances run on the 30.9ms latency, 1000Mbps network, we see that the experiments that are under
the initcwnd size limit still complete in roughly the same amount of time, at multiples of the round trip
latency. However, when including the intermediate certificate we see that all instances but KFFF and KDFF
suffer at least an extra round-trip worth of handshake time due to exceeding the limit of the initial congestion
window. Compared to the pre-quantum experiment, KDDD now requires 29.8ms (30.6%) more time if
an intermediate certificate needs to be transmitted. In the low-bandwidth, 195.5ms latency experiment
KDDD even needs 488.1ms (82.2%) more time. Even the KFFF instance sees a 34.6ms (5.8%) increase in
time when an intermediate certificate is included, again illustrating the impact of the larger certificates on
low-bandwidth connections. If Falcon-1024 is not an option for the online handshake signatures, using it
for CA certificates in the KDFF instantiation can mitigate the performance penalty compared to KDDD a
bit, by improving the performance to a slowdown of 25.8ms (4.3%) compared to the pre-quantum instance
errr.

The performance of the instances using SPHINCS+-256 variants is not too much slower than SPHINCS+-
192 on the fast network, even when the large intermediate CA certificates are transmitted. The instance
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Table 17: Instantiations at NIST level V of unilaterally authenticated post-quantum TLS handshakes and
the sizes of the public-key cryptography elements in bytes.

Leaf certificate Int. CA certificate Offline

Experiment Key Ex-
change

Handshake
auth.

Int. CA
signature

Int. CA
public key

Root CA
signature

Root CA
public key

handle pk+ct pk+sig sig Sum pk sig Sum pk

Pre-quantum X25519 RSA-2048 RSA-2048 848 RSA-2048 RSA-2048 1 376 RSA-2048
errr 64 528 256 272 256 272

Primary Kyber-1024 Dilithium5 Dilithium5 14 918 Dilithium5 Dilithium5 22 105 Dilithium5
KDDD 3136 7187 4595 2592 4595 2592

Falcon Kyber-1024 Falcon-1024 Falcon-
1024 7 489 Falcon-

1024
Falcon-
1024 10 562 Falcon-

1024
KFFF 3136 3073 1280 1793 1280 1793

Falcon
offline

Kyber-1024 Dilithium5 Falcon-
1024 11 603 Falcon-

1024
Falcon-
1024 14 676 Falcon-

1024
KDFF 3136 7187 1280 1793 1280 1793

SPHINCS+-f Kyber-1024 SPHINCS+-
256f

SPHINCS+-
256f 102 912

SPHINCS+-
256f

SPHINCS+-
256f 152 832

SPHINCS+-
256f

KSfSfSf 3136 49 920 49 856 64 49 856 64

SPHINCS+-s Kyber-1024 SPHINCS+-
256s

SPHINCS+-
256s 62 784

SPHINCS+-
256s

SPHINCS+-
256s 92 640

SPHINCS+-
256s

KSsSsSs 3136 29 856 29 792 64 29 792 64

Hash-based
signatures

Kyber-1024 SPHINCS+-
256s

XMSSMTs -V
35 971

XMSSMTs -V XMSSMTs -V
39 014

XMSSMTs -V

KSsXX 3136 29 856 2979 64 2979 64

HBS-CA Kyber-1024 Dilithium5 XMSSMTs -V 13 302 XMSSMTs -V XMSSMTs -V 16 345 XMSSMTs -V
KDXX 3136 7187 2979 64 2979 64

HQC HQC-256 Dilithium5 Dilithium5 33 496 Dilithium5 Dilithium5 40 683 Dilithium5
HDDD 21 714 7187 4595 2592 4595 2592

Table 18: Computation time inms for asymmetric cryptography at NIST level V for each of the unilaterally
authenticated post-quantum TLS instantiations at the client and server.

Handle
Intermediate cert. as root With intermediate CA cert.

Client Server Sum Client Server Sum

errr 0.134 0.629 0.763 0.150 0.629 0.779
KDDD 0.398 0.633 1.031 0.559 0.633 1.192
KFFF 0.420 0.830 1.250 0.592 0.830 1.422
KDFF 0.409 0.633 1.042 0.581 0.633 1.214
KSfSfSf 0.870 11.406 12.276 1.267 11.406 12.673
KSsSsSs 0.444 104.611 105.055 0.628 104.611 105.239
KSsXX 11.295 104.611 115.906 22.330 104.611 126.941
KDXX 11.272 0.633 11.905 22.307 0.633 22.940
HDDD 1.753 1.217 2.970 1.914 1.217 3.131
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Table 19: Average handshake times in ms for unilaterally authenticated post-quantum TLS experiments
at NIST level V with 30.9ms latency and 1000Mbps bandwidth. Server and client timers are
independent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

errr 65.9 97.0 35.0 66.1 97.2 35.2
KDDD 64.5 95.6 33.5 95.9 127.0 65.0
KFFF 66.4 97.5 35.4 67.1 98.2 36.2
KDFF 64.6 95.7 33.6 65.2 96.4 34.3
KSfSfSf 169.8 200.9 138.8 198.2 229.4 167.2
KSsSsSs 238.9 270.0 208.0 247.0 278.1 216.1
KSsXX 215.1 246.2 184.2 230.6 261.7 199.7
KDXX 110.9 142.0 80.0 121.1 152.2 90.2
HDDD 64.5 95.6 33.5 95.9 127.1 65.0

Table 20: Average handshake times inms for unilaterally authenticated post-quantum TLS experiments
at NIST level V with 195.5ms latency and 10Mbps bandwidth. Server and client timers are
independent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

errr 397.1 593.1 201.3 397.7 593.7 201.8
KDDD 416.4 616.5 216.6 885.8 1081.8 689.3
KFFF 401.3 597.3 204.8 426.8 628.3 227.5
KDFF 407.2 604.8 209.9 418.7 619.5 218.5
KSfSfSf 2748.2 3589.5 2482.5 4321.3 5100.0 3707.2
KSsSsSs 2047.6 2397.9 1819.3 2707.4 3445.2 2421.1
KSsXX 1172.1 1515.5 958.9 1205.3 1584.0 980.5
KDXX 474.2 680.6 265.8 879.9 1076.6 671.7
HDDD 418.4 618.9 218.0 885.7 1081.7 689.2
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based on SPHINCS+-256f (KSfSfSf ) is 19.7ms (9.4%) slower at level V than at level III, much less than the
42 608 bytes (39.8%) increase in signature size. However, it is still 102.3ms (80.6%) slower than the KDDD
instantiation, and 132.1ms (135.9%) slower than using pre-quantum cryptography. On the low-bandwidth
network, the additional bandwidth requirements very significantly slow down the TLS handshakes. Here,
KSfSfSf is 1285.7ms (33.7%) slower at level V compared to level III. The size-optimized instance that uses
SPHINCS+-256s, KSsSsSs, is 1654.8ms (32.4%) faster than KSfSfSf, easily making up for the additional
computational requirements, but still 4018.2ms (371.4%) slower than KDDD. Again, we see that using
XMSSMTs -V instead of SPHINCS+-256s leads to a significant increase in handshake performance: the KSsXX
instance takes 1861.1ms (54.0%) less time before the client receives a response.

Table 21: Instantiations at NIST level V of mutually authenticated post-quantum TLS experiments and the
sizes of the public-key cryptography elements transmitted in bytes.

Experiment
handle

Key
exchange

Server
authentication

Client
authentication

Sum Int. CA
certificate

Sum

Pre-quantum X25519 hs:RSA-2048
sig:RSA-2048

hs:RSA-2048
sig:RSA-2048

pk:RSA-2048
sig:RSA-2048

errr-rr 64 784 784
1 632

528
2 160

Primary Kyber-1024 hs:Dilithium5
sig:Dilithium5

hs:Dilithium5
sig:Dilithium5

pk:Dilithium5
sig:Dilithium5

KDDD-DD 3136 11 782 11 782
26 700

7187
33 887

Falcon Kyber-1024 hs:Falcon-1024
sig:Falcon-1024

hs:Falcon-1024
sig:Falcon-1024

pk:Falcon-1024
sig:Falcon-1024

KFFF-FF 3136 4353 4353
11 842

3073
14 915

Falcon offline Kyber-1024 hs:Dilithium5
sig:Falcon-1024

hs:Dilithium5
sig:Falcon-1024

pk:Falcon-1024
sig:Falcon-1024

KDFF-DF 3136 8467 8467
20 070

3073
23 143

SPHINCS+-f Kyber-1024 hs:SPHINCS+-256f
sig:SPHINCS+-256f

hs:SPHINCS+-256f
sig:SPHINCS+-256f

pk:SPHINCS+-256f
sig:SPHINCS+-256f

KSfSfSf-SfSf 3136 99 776 99 776
202 688

49 920
252 608

SPHINCS+-s Kyber-1024 hs:SPHINCS+-256s
sig:SPHINCS+-256s

hs:SPHINCS+-256s
sig:SPHINCS+-256s

pk:SPHINCS+-256s
sig:SPHINCS+-256s

KSsSsSs-SsSs 3136 59 648 59 648
122 432

29 856
152 288

Hash-based
signatures

Kyber-1024 hs:SPHINCS+-256s
sig:XMSSMTs -V

hs:SPHINCS+-256s
sig:XMSSMTs -V

pk:XMSSMTs -V
sig:XMSSMTs -V

KSsXX-SsX 3136 32 835 32 835
68 806

3043
71 849

HBS-CA Kyber-1024 hs:Dilithium5
sig:XMSSMTs -V

hs:Dilithium5
sig:XMSSMTs -V

pk:XMSSMTs -V
sig:XMSSMTs -V

KDXX-DX 3136 10 166 10 166
23 468

3043
26 511

HQC HQC-256 hs:Dilithium5
sig:Dilithium5

hs:Dilithium5
sig:Dilithium5

pk:Dilithium5
sig:Dilithium5

HDDD-DD 21 714 11 782 11 782
45 278

7187
52 465

hs: certificate public key and handshake signature
pk: certificate public key sig: certificate signature
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5.2 Mutually authenticated TLS 1.3

Communication requirements

Table 21 shows how we instantiate mutually authenticated post-quantum TLS 1.3 at level V and the sizes of
the public keys and signatures. Now, all instantiations exceed 10 kB even when omitting intermediate CA
certificates. The Kyber-1024 and Falcon-1024-based KFFF-FF instance is only marginally larger at level V
than at level III, however, as we already used level-V secure Falcon-1024 in the level III instantiation.

Computational requirements

Table 22 shows the computational requirements of the cryptography in these instantiations at level V. We
observe the same things as for the unilaterally authenticated handshakes, except the client now also needs
to produce a signature while the server has to verify this signature and the signature in the client certificate.

Table 22: Computation time inms for asymmetric cryptography at NIST level V for each of the mutually
authenticated post-quantum TLS instantiations at the client and server.

Handle
Intermediate cert. as root With intermediate CA cert.

Client Server Sum Client Server Sum

errr-rr 0.660 0.661 1.321 0.676 0.661 1.337
KDDD-DD 0.987 0.955 1.942 1.148 0.955 2.103
KFFF-FF 1.206 1.174 2.380 1.378 1.174 2.552
KDFF-DF 0.998 0.966 1.964 1.170 0.966 2.136
KSfSfSf-SfSf 12.232 12.200 24.432 12.629 12.200 24.829
KSsSsSs-SsSs 105.011 104.979 209.990 105.195 104.979 210.174
KSsXX-SsX 115.862 115.830 231.692 126.897 115.830 242.727
KDXX-DX 11.861 11.829 23.690 22.896 11.829 34.725
HDDD-DD 2.342 1.539 3.881 2.503 1.539 4.042

Handshake performance

In tables 23 and 24, we show the handshake performance. In both tables, the results are in line with what we
have seen for the unilaterally authenticated handshakes and the level III experiments.
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Table 23: Average handshake times inms formutually authenticated post-quantumTLS experiments atNIST
level V with 30.9ms latency and 1000Mbps bandwidth. Server and client timers are independent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

errr-rr 68.9 100.3 38.3 68.9 100.4 38.3
KDDD-DD 65.4 97.5 35.5 96.9 129.0 66.9
KFFF-FF 69.0 101.4 39.3 69.8 102.1 40.1
KDFF-DF 65.5 97.7 35.7 66.2 98.5 36.4
KSfSfSf-SfSf 230.9 333.7 271.5 237.3 340.6 278.4
KSsSsSs-SsSs 387.5 481.2 419.2 387.9 481.6 419.6
KSsXX-SsX 346.2 408.8 346.9 346.5 409.1 347.1
KDXX-DX 107.0 184.3 122.3 122.3 192.1 130.1
HDDD-DD 65.5 97.6 35.5 96.8 128.9 66.8

Table 24: Average handshake times in ms for mutually authenticated post-quantum TLS experiments
at NIST level V with 195.5ms latency and 10Mbps bandwidth. Server and client timers are
independent.

Intermediate cert. as root With root certificate

Handle Client
sent req.

Client
recv. resp.

Server
HS done

Client
sent req.

Client
recv. resp.

Server
HS done

errr-rr 399.9 597.2 205.2 401.0 598.4 206.1
KDDD-DD 426.0 641.7 233.3 801.1 1042.0 601.9
KFFF-FF 404.0 605.1 212.6 409.9 612.1 216.9
KDFF-DF 410.2 617.9 220.5 417.9 626.8 223.7
KSfSfSf-SfSf 3117.7 4918.7 3790.7 4577.6 7095.0 5936.6
KSsSsSs-SsSs 1504.9 2422.4 1834.0 2255.4 3630.6 2887.9
KSsXX-SsX 1198.6 1809.2 1282.4 1312.4 1973.6 1442.1
KDXX-DX 483.9 753.1 328.9 628.4 895.1 478.5
HDDD-DD 427.2 642.9 234.2 785.5 1032.3 590.9
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6 Discussion

Summarizing the results for our experiments across NIST security level I, III, and V, we see that Kyber and
Dilithium offer reasonable performance. The size of Dilithium does affect the handshake times significantly
at levels III and V, due to these instances exceeding the initial congestion window size. Falcon offers
comparable or better performance, as the AVX2-accelerated implementation is highly performant and its
public keys and signatures are the smallest. If using Falcon for online signatures is not an option due to
its requirement of constant-time 64-bit floating-point arithmetic for signing, using it with Dilithium for
online signatures as in our KDFF instances is very attractive, although this does increase the size of the
codebase. Using SPHINCS+ does not seem very attractive for TLS 1.3: both in computation time and size
of signatures, the scheme very significantly affects the handshake performance. If any application greatly
prefers using a hash-based signature scheme, it seems using alternatives to SPHINCS+ for CA certificates
can offer very large performance improvements, especially at higher security levels.

Our conclusions are also reflected by figure 1: all of the instantiations are mostly gathered together
around the 3-RTT line. Only the instances that use large certificates or that use slower algorithms such as
XMSSMTs move away from this line. In the bottom plot, we compare all of the instantiations using SPHINCS+:
they are so large and comparatively slow that the top graph fits in the lower left corner of the bottom graph.

Our experiment is not the first to look at the performance of post-quantum TLS. Comparing our results
with [30, 38, 39, 40, 41], we see that we arrive at similar results. For high-bandwidth connections, the
increase in computation time is very moderate for any scheme that stays under the initcwnd limit on the
number of MSS that can be sent before receiving a TCP acknowledgment from the recipient. As Sikideris,
Kampanakis, and Devetsikiotis first observed in [39], we see that combining two different algorithms for
online handshake authentication and offline CA certificates can greatly influence connection establishment
times.

As Westerbaan [41] highlighted, there are many more signatures in a typical TLS handshake on the
web than we included in our experiments. The Google Chrome and Safari web browsers require at least
two certificate transparency (CT) [25] proofs to be included for any certificate [4, 12]. This means that in
every certificate, there are two additional signatures from CT logs. The online certificate status protocol
(OCSP) [34], which allows a server to show that its certificate is not revoked, also consists of a signed
statement from the certificate authority. CT and OCSP thus add another three offline signatures to the
typical TLS handshake traffic. If all of the signature algorithms in the TLS handshake are instantiated with
Dilithium2, this adds up to 17 144 bytes of public keys and signatures that are sent in the ServerCertificate
message. This easily exceeds a 10MSS initial congestion window size. This means using different algorithms
for online and offline signatures and/or standardizing mechanisms that allow removing or suppressing of
some of the signatures [22] may be vital to the performance of TLS on the web.

The initial congestion window size default of 10MSS is a fairly recent development, first suggested by
Google [16]. This suggestion was implemented by Linux in 2011, before being standardized by the IETF in
RFC 6928 in 2013 [13]. Before, the recommendation was a congestion window “between 2 and 4 segments”.
It has been argued that the congestion window can be increased to allow for the larger sizes of post-quantum
cryptographic algorithms, e.g. in [6]. Indeed, many content delivery networks already use much larger
congestion windows [33]. Increasing the initial congestion window across the internet may be a valid strategy
for handling the increase in TLS handshake traffic. However, too large values could result in congestion
and packet loss. RFC 6928 [13, Appendix A] additionally highlights that raising the congestion window may
have adverse effects on internet connection speeds in the developing world. Evaluating what would be the
best value for initcwnd and the impact of changing the value on the congestion control behavior of TCP
across the internet is beyond the scope of this thesis, however, and we leave this for other work.

Finally, we have not explored the computational load of our instantiations. The algorithms have very
different computational characteristics. If an algorithm has very high computational requirements, this
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Figure 1: Handshake timings of post-quantum TLS experiments
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may result in a limitation on the number of connections that a server may be able to support. Sikideris,
Kampanakis, and Devetsikiotis examined this for unilaterally authenticated TLS 1.3 using round-2 schemes
in [39] and showed that a server running Dilithium may be able to support more connections than a server
running Falcon. In our experiments, the server was also exactly as computationally powerful as the client:
after all, they ran on the same machine. Often, however, this is not the case: clients may, for example, have
battery life concerns, such as smartphones or laptops. Further examining these issues in post-quantum
TLS remains for future work. Another example of asymmetry between clients and servers is the case of
the performance of post-quantum TLS on microcontrollers, which are much less powerful and may have
low-bandwidth links. We will discuss this issue in chapter 16.

7 Appendix: XMSS at different NIST security levels

The security of XMSS parameter sets specified in RFC 8391 [18] reach NIST security level V (equivalent to
AES-256) and above. This high level of security has only a veryminor impact on computational performance,
but it does have a significant impact on signature size. The NIST standard [14] also considers parameter
sets targeting security level III (equivalent to AES-192); the simple modification is to truncate all hashes to
192 bits. This is possible because the security of XMSS and its multi-tree variant XMSSMTis guaranteed by
a tight reduction from second-preimage resistance [8, 21]; collisions in the underlying hash function do not
affect the security of XMSS. We straightforwardly extend XMSS to parameter sets targeting NIST security
levels I and III. For level I, hashes are simply truncated to 128 bits; we obtain this by using SHAKE-128 [28]
with 128 bits of output. For level III, we use SHAKE-256 truncated to 192 bits of output. SPHINCS+

similarly constructs its level-I and level-III parameter sets. Aside from minor details, XMSS can be seen as a
“sub-step” of SPHINCS+; see [19]. To complete our set of parameters, we also specify a variant at NIST
security level V, which obtains 256 bits from SHAKE-256.

We define XMSSMTs as an instantiation of XMSSMTusing two trees of height 12 each, i.e., a total tree height
of 24, which limits the maximum number of signatures per public key to 224 ≈ 16.7million. Increasing this
maximum number of signatures to, for example, 230 ≈ 1 billion increases signature size by only 96 bytes
and has negligible impact on verification speed. It does have an impact on key-generation speed and signing
latency, but as mentioned in section 13.6.3, the latency of signing is not very relevant when used by certificate
authorities as in our benchmarks.

Multi-tree XMSS is particularly well-suited for efficient batch signing. The idea is to compute one whole
tree (of height ℎ/𝑑) on the lowest level and use it on-the-fly to sign 2ℎ/𝑑 messages. The computational effort
per signature is then essentially reduced to one WOTS+ key-pair generation.

We set the Winternitz parameter in XMSSMTs to 𝑤 = 256 to optimize for signature size. Changing to the
more common 𝑤 = 16 would increase the signature size by about a factor of 2 and speed up verification by
about a factor of 8.
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