Energy-Efficient ARMG64 Cluster with
Cryptanalytic Applications

80 Cores That Do Not Cost You an ARM and a Leg

Thom Wiggers

Institute of Computing and Information Science, Radboud University, The Netherlands
thom@thomwiggers.nl

Abstract Getting a lot of CPU power used to be an expensive under-
taking. Servers with many cores cost a lot of money and consume large
amounts of energy. The developments in hardware for mobile devices has
resulted in a surge in relatively cheap, powerful, and low-energy CPUs.
In this paper we show how to build a low-energy, eighty-core cluster built
around twenty ODROID-C2 development boards for under 1500 USD.
The ODROID-C2 is a 46 USD microcomputer that provides a 1.536 GHz
quad-core Cortex-A53-based CPU and 2 GB of RAM. We investigate
the cluster’s application to cryptanalysis by implementing Pollard’s Rho
method to tackle the Certicom ECC2K-130 elliptic curve challenge. We
optimise software from the Breaking ECC2K-130 technical report for the
Cortex-A53. To do so, we show how to use microbenchmarking to derive
the needed instruction characteristics which ARM neglected to document
for the public. The implementation of the ECC2K-130 attack finally
allows us to compare the proposed platform to various other platforms,
including “classical” desktop CPUs, GPUs and FPGAs. Although it may
still be slower than for example FPGAs, our cluster still provides a lot of
value for money.

Keywords: ARM, compute cluster, cryptanalysis, elliptic curve crypto-
graphy, ECC2K-130

1 Introduction

Bigger is not always better. Traditionally large computational tasks have been
deployed on huge, expensive clusters. These are often comprised of a collection
of energy-hungry CPUs. In recent years, GPUs, FPGAs and other accelerators
have complemented these. While they provide a decent speed boost, they do not
bring down the price of acquiring the hardware. It is also more difficult to write
software for GPUs and FPGAs.

The rise of portable computing in smartphones, tablets and the “Internet of
Things” has coincided with a surge in relatively low-cost, powerful and low-energy
CPUs. We investigate a cluster built from ARM Cortex-A53 based development
boards. The Cortex-A53 has been employed in many smartphones,' and is also the

! Including the Motorola Moto G5 Plus, Moto X Play, Samsung Galaxy A3 and A5,
and HTC Desire 826: https://goo.gl/aZMky5

https://goo.gl/aZMky5

2 Thom Wiggers

CPU powering the popular Raspberry Pi 3 [4] development board and Nintendo
Switch game console [21]. We used the ODROID-C2 by Hardkernel [17]. The
ODROID-C2 provides a quad-core, 1.536 GHz CPU and 2GB of RAM for 46 US
Dollars.

In this paper, we will start out by showing how to build a cheap cluster
from 20 ODROID-C2 boards. This includes a “shopping list” with all of the
required components. We will then discuss the characteristics of the Cortex-Ab53.
Microbenchmarking is used to determine instruction characteristics that ARM
have neglected to publish.

Next, we adapted software from the international effort to break the ECC2K-
130 challenge elliptic curve [3] to run on our platform. Using Karatsuba multi-
plication and bitslicing techniques, we are able to run 79 million Pollard Rho
iterations per second on our full cluster.

Finally, the results with our ECC2K-130 software allow us to compare the
cluster to several other platforms. We will compare our efforts with the imple-
mentations of ECC2K-130 on Desktop CPUs, GPUs and FPGAs. While it may
still be slower than FPGASs, our cluster still provides a lot of performance on a
modest budget.

2 Building a Cheap Cluster

In this section we will explain how we built the cluster. We hope this inspires
people who consider building a similar setup.

We ordered hardware as per the shopping list in Table 1. The listed prices are
indicative of what we paid for the components. We did however pay a bit more
for the ODROID-C2s due to European availability, shipping times and taxes.
The listed price is from the manufacturer at Hardkernel.com.

Table 1. Shopping list for the complete cluster. Cost of the Lego is not included.

Item Cost per unit (USD) Number Total cost
ODROID-C2 $ 46 20 $ 920
5V Power Supply $5 20 $ 100
Micro-SD cards $ 17 20 $ 340
LAN cables $1 21 $ 21
24-port switch (TL-SG1024D) $ 85 1 $ 85
Total $ 1466

We formatted the SD cards and prepared them with Arch Linux ARM.
Ansible [1] was used to provision them with the appropriate settings and to
deploy software. The provisioning scripts and Ansible playbooks are available at
thomwiggers.nl/research/armcluster/.

http://hardkernel.com
https://thomwiggers.nl/research/armcluster/

Energy-Efficient ARM64 Cluster with Cryptanalytic Applications 3

Inspired by Cox et al.’s Raspberry Pi cluster [12], we built a Lego enclosure
for the ODROID-C2 boards as seen in Figure 1. It allows us to mount the boards
in such a way that we get a reasonably compact setup. It also prevents any
unwanted contact between exposed metal parts of the boards (notably I/O pins).
Finally, Legos allow to preserve some airflow as they are rigid enough to leave
gaps between columns of the structure.

Figure 1. The assembled Lego “rack”. Cable management remains a subject for further
investigation.

3 The ARM Cortex-A53

The ARM Cortex-A53 is a 64-bit CPU that implements the ARMv8-A architec-
ture. As such it provides 32 registers, twice the number of registers in the previous
ARMvT architecture. Of special interest for high-performance applications are
the 128-bit NEON registers, as we will explain in Section 4.3. ARMv8 provides
32 of these SIMD registers, again doubling the number available compared to
ARMvT [2].

3.1 Determining Hardware Characteristics

To be able to understand the real potential performance of a certain CPU, we
need to look at how CPU instructions behave. We need to understand not only

4 Thom Wiggers

the number of cycles a certain instruction spends, but also the instruction latency,
the delay before its result becomes available. This allows us to write software that
uses the available circuits as efficiently as possible. Unfortunately, while ARM
published very detailed information for previous generations of Cortex CPUs, we
found information on the Cortex-A53 severely lacking. This meant we had to try
and figure out cycle timings and instruction characteristics ourselves.

Fortunately, the Cortex-A53 does provide a cycle counter. It is precise enough
to do benchmarking of small snippets of code. An example benchmark is given
in Listing 1. This program takes nine cycles. We know that reading the cycle
counter costs a cycle, so these four instructions cost eight cycles. From this we
can conclude that in a sequence of loads, each load costs two cycles if they are
independent.

fourloads: mrs x17, PMCCNTR_ELO ; store cycle counter at z17
ldr q0, [x0] ; load qO0 from address z0
ldr q1, [x0] ; load q1
ldr g2, [x0] ; load g2
ldr g3, [x0] ; load g3
mrs x18, PMCCNTR_ELO ; store cycle counter at x18
sub x0, x18, x17 ; cycles spent = 18 - =19
ret

Listing 1: Example microbenchmark subroutine that measures four independent
128-bit vector loads.

Listing 2 demonstrates a sequence of instructions where the second instruction
uses the result of the first one. These two lines are measured to cost four cycles.
We know that 1dr is two cycles and eor costs a single cycle. This demonstrates
that there is an extra cycle spent waiting for the result of the 1dr to become
available.

ldr q0, [x0]
eor v0.16b, v0.16b, v0.16b

Listing 2: Example microbenchmark to investigate vector load latencies. Note
that q0 and vO are the same register.

The two instructions shown in Listing 3 take only two cycles to execute. This
is a cycle less than the simple addition of the two cycles of 1dr and single cycle
of eor. This shows that some instructions may execute simultaneously.

We can use these details to avoid bad schedules that cost more cycles than
necessary, like that in Listing 2, and try to use those that do more in fewer cycles
as in Listing 3 instead. A summary our hypotheses for 128-bit vector operations
can be found in Table 2. These operations are of interest to our application,

Energy-Efficient ARM64 Cluster with Cryptanalytic Applications 5

ldr q0, [x0]
eor v1.16b, v1.16b, v1.16b

Listing 3: Example microbenchmark to investigate the NEON execution pipelines.

which will become clear in Section 4. In Appendix A we will discuss some more
findings for other operations and input sizes.

Detailed information on instruction characteristics is clearly of vital import-
ance for the optimisations performed by compilers. Without it, they can hardly
be expected to generate efficient instruction schedules. Unfortunately, it appears
both Clang and GCC suffer from the lack of documentation. They generate
arguably inefficient code in our tests with NEON programs. Consequently, to get
decent performance out of the Cortex-A53 we need to hand-optimise code. We
would still like to urge ARM to release better documentation for this CPU.

Table 2. Hypothesised 128-bit vector instruction characteristics on the Cortex-A53.
Latencies are including the issue cycles. Vector 1dr and 1dp can be paired with a single
arithmetic instruction for free. See Appendix A for more details.

Instruction Issue cycles Latency (cycles)

Binary arithmetic (eor, and)
Addition (add)

Load (1dr)

Store (str)

Load pair (1dp)

Store pair (stp)

‘ww»—

[I N e N R
w
S

Of special interest are the instructions that load or store two registers at the
same time. When using these for vector registers, they appear to be at best as
fast as the two individual instructions they would replace. “Load pair” 1dp in
particular does not appear to pair up with arithmetic instructions as well as 1dr
does, making it almost always a poor choice. Unfortunately, code generated by
Clang 4.9 makes heavy use of it.

Our benchmarking software is available through our website at thomwig-
gers.nl /research/armcluster/. We hope that it allows others to learn more about
this platform, and welcome contributions.

4 Breaking ECC on the Cortex-A53

To better understand the complexity of the elliptic-curve-discrete-logarithm
problem (ECDLP) underlying elliptic curve cryptography, Certicom has published
several challenges [10]. Several smaller instances have been broken already, but
the 131-bit challenges, the last level-I challenges, remain open. There are two
challenges over Foi31 and one over I, where p is a 131-bit prime number.

https://thomwiggers.nl/research/armcluster/
https://thomwiggers.nl/research/armcluster/

6 Thom Wiggers

The 2009 report “Breaking ECC2K-130" [3] describes a viable attack on
the Koblitz curve challenge in Fais1 using Pollard’s Rho method [20]. They
implement their approach on various hardware platforms and give estimates how
many instances of those platforms would be needed to carry out the full attack.
We can build on this work by adapting the attack to our platform and providing
similar estimates.

We will first explain how the attack works and analyse the expected complexity.
Then we will go into adapting the attack to our target platform, the Cortex-A53.
Finally, we will discuss performance estimates based on real-world benchmarks
of this work.

4.1 Distributed Pollard Rho

The ECDLP problem is defined as follows: given an elliptic curve E and two
points P, @ on curve F such that Q = [k]P, find the integer k. In other words, try
to find the discrete logarithm of () with respect to the base point P on an elliptic
curve E. This problem, the basis of elliptic curve cryptography, is assumed to be
hard.

Pollard’s Rho algorithm for logarithms [20] is a well-known and powerful
method to try to find such a k in an expected \/7l/2 steps, where [is the order
of P. By performing pseudo-random walks over the curve it tries to find integers
a,b,a’, b’ such that R = aP + bQ = a’P + b/'Q with b # b’. When it finds such a
solution, k can be obtained as k = ‘;:—:g

Van Oorschot and Wiener [18] described how to distribute this algorithm
over K machines to gain a ©(K) speedup. It works by having a server collect a
subset of the points (R, a,b) computed by clients performing walks over the curve.
These points are known as distinguished points. The clients submit the points
with a Hamming weight of the = coordinate of R that is less than or equals 34 in
a normal-basis representation. The server checks for each (R, a,b) it receives if it
has already received a triple (R, a’,b") where b # b'. If it has, it computes the
solution k as above.

We should note that the authors of Breaking ECC2K-150 [3] expect to break

ECC2K-130 in an expected number of 2609 € O (wl/(2-2- 131)) iterations.

They achieve this speedup over the general case of \/m by applying various
methods that exploit the special structure of Koblitz curves.

4.2 TIteration Function
We adopted the software from [3], which we obtained from the authors. In this

section we will describe the iteration function it uses to walk over the curve.
The iteration function is defined as
Riy1 =0/ (R) + R;
where j = HW ((zg,) /2 mod 8) + 3. HW is the Hamming Weight function

and ¢ is the Frobenius endomorphism, so o7 ((z,y)) = (¢2’,3?). This group
automorphism can be used because ECC2K-130 is a Koblitz curve.

Energy-Efficient ARM64 Cluster with Cryptanalytic Applications 7

As 3 < 7 <10, putting all this together means that each iteration consists of
at most twenty squarings and a single elliptic curve addition. In affine coordinates
this means doing this for a single point would take one inversion, two multiplica-
tions, 21 squarings and seven additions over the underlying field. “Montgomery’s
trick” [16] can be used to batch up N inversions, which allows us to trade the
N inversions for a single inversion and 3N — 3 multiplications. The number of
multiplications per iteration thus quickly converges to five, while the number of
inversions becomes negligible for large enough N.

For the full details of the attack on ECC2K-130 we will defer to [3]. This
concerns more details of the iteration function, parameters and their motivation.

4.3 Bitslicing

Bitslicing is a powerful technique used by the software from [3] that allows us to
perform many operations in parallel. First we unpack the 131 bits of a Fais: field
element into 131 separate vectors. If we do this for many of these elements, we
then can take the jth bit of all these field elements and put them all in a single
vector. We do this such that in the ith vector, the jth bit represents the ¢th bit
of the jth element. As we have 128-bit NEON vector registers on ARMvS8, we
store 128 bits of 128 field elements in each vector. We then use the binary logic
operations on these NEON registers as if they are 128-way SIMD instructions
operating on each bit simultaneously.

This technique increases the latency for a single iteration as each operation
needs to be decomposed into bit-wise programs. However, because of the massive
increase in parallelism we achieve a much higher throughput. Effectively, we can
divide our operation counts by 128, as each bit operation manipulates 128 field
elements at the same time.

4.4 Optimising Multiplications

Multiplications are the most expensive operation in terms of bit operations.
Naively, they scale quadratically in the size of the input. Experimental results
also show that multiplications accounted for most of the runtime of our software.

Doing schoolbook multiplication of two 131-bit polynomials would take 1312
ANDs and 1302 XORs, adding up to 34061 bit operations in total. Karatsuba’s
method [15] is a well known improvement over the classic method. We followed
Hutter and Schwabe’s approach [14] to efficiently schedule Karatsuba with
techniques from [5, 9] to write 33- and 32-bit multipliers in assembly. We then
compose these to form the full 131-bit multiplier.

Karatsuba’s method computes the multiplication of two binary, n-bit poly-
nomials by first splitting these polynomials in upper and lower parts. It then
computes the product of the two upper parts, the two lower parts and the product
of the addition of the upper and the lower part of the two inputs. These products
are again computed using Karatsuba. Like [14] we use the refined Karatsuba
approach from [5] to further reduce the number of operations needed. This comes
together in Algorithm 1. Unlike the algorithms in Hutter and Schwabe’s work, as

8 Thom Wiggers

we are working on binary polynomials, we do not need to worry about carrying
bits.

Algorithm 1 Refined Karatsuba, R=A- B

Write A = (ao,...,an-1), B = (bo,...,bn—1). Let k = Z. We distinguish the upper
and lower parts as A; = (ao,...,ak-1), An = (a@k,...,an-1), Bi = (bo,...,bk—1),

Bp = (bky...,bn—1). The result will be given as R = (ro,...,T2an—2).

n
2
5

1. Compute A; - B;. Let the result be L = (lo, ..., ln—2).

2. The lower k bits of the result R are now known: (ro,...,7%—1) = (loy. .., lk—1).

3. We now compute (A; + Ap) and (B; + Bp) so we can drop the registers holding
the lower parts.

4. Compute H = A, - B, + (lgy v yln—2) = (Bo,...7ﬁn,2). It is important to do

this addition during the multiplication, to minimise the number of values kept in

registers.

Set the upper result bits: (rnqr—1,...,72n—2).

Compute M = (Al + Ah) . (Bl + Bh)‘

Let U = (lo, ol FL(), ceey FLk_l).

Compute U =U + M + H.

Set the remaining result bits (rg,...,Thir—2) = U.

© %N o

This approach is not the cheapest in number of operations. Bernstein [5, 6]
presents upper bounds for multiplication which have fewer operations. We will
present a comparison in Section 5.1. However, the Bernstein multipliers are much
harder to manually schedule, as they are presented as straight-line code with
many intermediate values. The compilers we tried also struggled with it, and
our assembly multipliers easily outperform the code generated for Bernstein’s
straight-line programs. These multipliers are available through our website at
thomwiggers.nl/research/armcluster/.

4.5 Pollard Rho Iterations Per Second

With our high-speed multipliers, batching 32 inversions, and using bitslicing to
perform 128 iterations in parallel, we achieve a speed of 1560 cycles per iteration.
As the ODROID-C2 has four cores running at 1536 MHz, this means that a
single board performs 3.94 million iterations per second. As we expect to need
260-9 Pollard Rho iterations, we would need to have 17310 boards or 866 clusters
running continuously to break the ECC2K-130 challenge curve in one year.

5 Results and Comparison

5.1 Benchmarking Multiplications

By using the cycle counters made available by the architecture we can obtain
accurate cycle counts. We will compare our optimised assembly code with the num-

https://thomwiggers.nl/research/armcluster/

Energy-Efficient ARM64 Cluster with Cryptanalytic Applications 9

ber of bit operations and with the code given by Bernstein [6]. We compiled the
code by Bernstein using Clang 4.9 with the settings -0fast -mtune=cortex-ab3
—-fomit-frame-pointer. We will also give the number of bit operations needed
by our Karatsuba approach. The published software includes our benchmarking
program.

Table 3. Multiplication benchmarks. Cycle counts reported are the median of 200 000
measurements.

4 x4 8 x8 16 x 16 32 x 32

Bit operations [6] 25 100 350 1158
Refined Karatsuba bit opera- — 100 353 1168
tions (Algorithm 1)

Straight-line code [6] in C 59 173 909 3698
(cycles)

This work (cycles) 42 137 416 2173

The results are shown in Table 3. The difference between the number of bit
operations and the number of cycles needed can largely be found in the number
of loads and stores that are needed. Some of these are required, such as the
loads that are needed for the inputs (2n for an n x n multiplier) and the store
operations needed to write the result (2n — 2). Based on what we learnt from the
microbenchmarks in Section 3.1 we should thus expect an additional 4n —2 cycles.
Any further overhead results from extra spills that need to be done because not
all intermediates fit into the available registers and from bad scheduling. It is
not always possible to schedule the instructions in such a way that all pipeline
stalls can be avoided.

The massive difference between the number of bit operations and the needed
CPU cycles for the straight-line C code clearly demonstrates the poor performance
of the code generated by C-compilers on the Cortex-A53. ARM would make this
platform a lot more attractive if they provided the compilers with the information
they need to improve instruction scheduling.

5.2 Energy Usage

We performed measurements of the energy usage of our cluster. For the meas-
urements we used a Globaltronics GT-PM-07 Energy Meter. We measured the
consumption at the wall socket, where the device or devices we were measuring
were plugged in. This means that consumption includes peripheral devices like
adaptors. For the measurements of multiple devices, we measured the power strip
into which everything was plugged in.

10 Thom Wiggers

Measurements were obtained for both heavy CPU load and while the cluster
was idle.? To generate CPU load we ran our ECC2K-130 software. Results can
be found in Table 4. All results have been rounded up.

Table 4. Energy Usage

Item Watts
ODROID-C2 ch;’% load §§ a
Switch 13 W
20 ODROID-C2s ICdllfU load 108 W
Complete System ICdllfU load 123 x

5.3 Comparison With Other Hardware

Because the ECC2K-130 software has been optimised for many platforms, we
can use it to make a comparison. The 2009 technical report [3] and the papers
discussing further improvements of implementations on various platforms [7, 9,
13] provide iteration counts for various systems. While these platforms are no
longer state-of-the-art, we think it still provides some insight into how our cluster
compares. However, we will not compare prices of the different platforms, as some
are no longer available and their retail prices are not representative anymore.

To get some more modern numbers, we adapted our software to run on AVX2
as well. In the table we list the performance of the 10-core Intel E5—2630L v4. This
is a 10-core, 1.8 GHz CPU. Our implementation needs 294 cycles per iteration
on this machine, for a total of 61 million iterations per second. While very fast,
this CPU does come with a hefty price tag. It does illustrate that Intel CPUs
also have gotten quite a bit faster.

Table 5 compares a desktop CPU, a GPU, the PlayStation 3 and a Spartan 3
FPGA with the ODROID-C2. We can see that at least per watt, the ODROID-C2
performs admirably. This conclusion is strengthened if one considers that the
other platforms need more hardware. For instance, CPUs and GPUs need to be
mounted on Motherboards and require additional hardware such as hard drives.
These consume additional energy.

We see that FPGAs clearly outperform all competitors, including our pro-
posal. They provide an impressive amount of iterations for very low energy.
On a different curve and using a more recent FPGA, Bernstein, Engels, Lange,

2 We should note that is important to remove the J2 jumper from the ODROID-C2
board when not powering it through USB: this saves a significant amount of energy.

REFERENCES 11

Table 5. ECC2K-130 on various platforms [3, 7, 9, 13]

Type Instance Iters/s Watts Watts / Notes
(x10%) (10°
iters/s)
CPU Core 2 22.45 130 W 5.8 CPU TDP only
QX6850
CPU E5-2630L v4 61 55 W 0.9 CPU TDP only
GPU NVIDIA GTX 63 280 W 46 GPU only
295
PS3 PlayStation 3 25.57 200 W 7.8 Energy use
Cell CPU while in “normal
use”[19], 380 W
PSU
FPGA Xilinx 111 5W 0.045
XC355000
ARM ODROID-C2 3.94 5W 1.3
ODROID-C2 79 122 W 1.5
Cluster

Niederhagen, Paar, Schwabe and Zimmermann achieve 300 million iterations per
second, although we should note that their curve is only 113 bits [8]. For purely
cryptanalytic purposes FPGAs thus remain the most potent candidate.

However, our cluster is composed of more general-purpose hardware and can
be used using more common programming languages. This makes it much more
accessible and more generally applicable. We also see applications in education,
in for example teaching distributed algorithms.

References

[1] Ansible. Accessed 2017-06-22. URL: https://docs.ansible.com/ansible/
(cit. on p. 2).

[2] ARM Cortex-A Series Programmer’s Guide for ARMuv8-A. Version 1.0,
accessed 2017-06-22. URL: https ://developer . arm. com/products/
processors/cortex-a/cortex-ab3/docs/den0024/latest/1-introduction
(cit. on p. 3).

[3] Daniel V. Bailey, Lejla Batina, Daniel J. Bernstein, Peter Birkner, Joppe W.
Bos, Hsieh-Chung Chen, Chen-Mou Cheng, Gauthier Van Damme, Giacomo
de Meulenaer, Luis Julian Dominguez Perez, Junfeng Fan, Tim Giineysu,
Frank Giirkaynak, Thorsten Kleinjung, Tanja Lange, Nele Mentens, Ruben
Niederhagen, Christof Paar, Francesco Regazzoni, Peter Schwabe, Leif
Uhsadel, Anthony Van Herrewege and Bo-Yin Yang. Breaking ECC2K-150.
Cryptology ePrint Archive, Report 2009/514. 2009. URL: https://eprint.
iacr.org/2009/541/ (cit. on pp. 2, 6, 7, 10, 11).

https://docs.ansible.com/ansible/
https://developer.arm.com/products/processors/cortex-a/cortex-a53/docs/den0024/latest/1-introduction
https://developer.arm.com/products/processors/cortex-a/cortex-a53/docs/den0024/latest/1-introduction
https://eprint.iacr.org/2009/541/
https://eprint.iacr.org/2009/541/

12

[10]

[11]

[13]

REFERENCES

BCM2837 — Raspberry Pi documentation. Accessed 2017-05-08. URL: https:
/ / www . raspberrypi . org / documentation / hardware / raspberrypi /
bcm2837/README . md (cit. on p. 2).

Daniel J. Bernstein. ‘Batch Binary Edwards’. In: Advances in Cryptology -
CRYPTO 2009. Ed. by Shai Halevi. Berlin, Heidelberg: Springer-Verlag,
2009, pp. 317-336. 1SBN: 978-3-642-03356-8. DOI: 10.1007/978-3-642-
03356-8_19. URL: https://cr.yp.to/papers.html#bbe (cit. on pp. 7,
8).

Daniel J. Bernstein. Minimum number of bit operations for multiplication.
Accessed 2017-04-05. 31st May 2009. URL: https://binary.cr.yp.to/m.
html (cit. on pp. 8, 9).

Daniel J. Bernstein, Hsieh-Chung Chen, Chen-Mou Cheng, Tanja Lange,
Ruben Niederhagen, Peter Schwabe and Bo-Yin Yang. ‘ECC2K-130 on
NVIDIA GPUs'. In: Progress in Cryptology — INDOCRYPT 2010. Ed.
by Guang Gong and Kishan Chand Gupta. Vol. 6498. Lecture Notes
in Computer Science. Springer-Verlag, 2010, pp. 328-346. URL: http :
//cryptojedi.org/papers/#gpuevil (cit. on pp. 10, 11).

Daniel J. Bernstein, Susanne Engels, Tanja Lange, Ruben Niederhagen,
Christof Paar, Peter Schwabe and Ralf Zimmermann. Faster discrete
logarithms on FPGAs. 2016. URL: http://cryptojedi . org/papers/
#sect113r2 (cit. on p. 11).

Joppe W. Bos, Thorsten Kleinjung, Ruben Niederhagen and Peter Schwabe.
‘ECC2K-130 on Cell CPUS’. In: Progress in Cryptology — AFRICACRYPT
2010. Ed. by Daniel J. Bernstein and Tanja Lange. Vol. 6055. Lecture
Notes in Computer Science. Springer-Verlag, 2010, pp. 225—-242. URL: http:
//cryptojedi.org/papers/#cbevil (cit. on pp. 7, 10, 11).

Certicom Corp. The Certicom ECC Challenge. Accessed 2017-04-03. URL:
https://www.certicom. com/content/certicom/en/the-certicom—
ecc-challenge.html (cit. on pp. 5, 14).

Certicom Research. Certicom ECC Challenge. 10th Nov. 2009. URL: https:
//www.certicom.com/content/dam/certicom/images/pdfs/challenge-
2009.pdf (cit. on p. 14).

Simon J. Cox, James T. Cox, Richard P. Boardman, Steven J. Johnston,
Mark Scott and Neil S. O’Brien. ‘Iridis-pi: a low-cost, compact demon-
stration cluster’. In: Cluster Computing 17.2 (2014), pp. 349-358. DOL:
10.1007/s10586-013-0282-7. URL: http://dx.doi.org/10.1007/
$10586-013-0282-7 (cit. on p. 3).

Junfeng Fan, Daniel V. Bailey, Lejla Batina, Tim Guneysu, Christof Paar
and Ingrid Verbauwhede. ‘Breaking Elliptic Curve Cryptosystems Using
Reconfigurable Hardware’. In: 2010 International Conference on Field
Programmable Logic and Applications. Aug. 2010, pp. 133-138. DOI: 10.
1109/FPL.2010.34 (cit. on pp. 10, 11).

Michael Hutter and Peter Schwabe. ‘Multiprecision multiplication on AVR
revisited’. In: Journal of Cryptographic Engineering 5.3 (2015), pp. 201-214.
URL: http://cryptojedi.org/papers/#avrmul (cit. on p. 7).

https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2837/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2837/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2837/README.md
https://doi.org/10.1007/978-3-642-03356-8_19
https://doi.org/10.1007/978-3-642-03356-8_19
https://cr.yp.to/papers.html#bbe
https://binary.cr.yp.to/m.html
https://binary.cr.yp.to/m.html
http://cryptojedi.org/papers/#gpuev1l
http://cryptojedi.org/papers/#gpuev1l
http://cryptojedi.org/papers/#sect113r2
http://cryptojedi.org/papers/#sect113r2
http://cryptojedi.org/papers/#cbev1l
http://cryptojedi.org/papers/#cbev1l
https://www.certicom.com/content/certicom/en/the-certicom-ecc-challenge.html
https://www.certicom.com/content/certicom/en/the-certicom-ecc-challenge.html
https://www.certicom.com/content/dam/certicom/images/pdfs/challenge-2009.pdf
https://www.certicom.com/content/dam/certicom/images/pdfs/challenge-2009.pdf
https://www.certicom.com/content/dam/certicom/images/pdfs/challenge-2009.pdf
https://doi.org/10.1007/s10586-013-0282-7
http://dx.doi.org/10.1007/s10586-013-0282-7
http://dx.doi.org/10.1007/s10586-013-0282-7
https://doi.org/10.1109/FPL.2010.34
https://doi.org/10.1109/FPL.2010.34
http://cryptojedi.org/papers/#avrmul

REFERENCES 13

[15] Anatolii Karatsuba and Yu Ofman. ‘Multiplication of multidigit numbers
on automata’. In: Soviet Physics Doklady. Vol. 7. 1963, p. 595 (cit. on p. 7).

[16] Peter L. Montgomery. ‘Speeding the Pollard and elliptic curve methods of
factorization’. In: Mathematics of computation 48.177 (1987), pp. 243-264
(cit. on p. 7).

[17] ODROID-C2. Accessed 2017-04-03. URL: http://www.hardkernel . com/
main/products/prdt_info.php?g_code=G145457216438 (cit. on p. 2).

[18] Paul C. van Oorschot and Michael J. Wiener. ‘Parallel Collision Search
with Cryptanalytic Applications’. In: Journal of Cryptology 12.1 (1999),
pp. 1-28. DOI: 10.1007/PL0O0003816. URL: http://dx.doi.org/10.1007/
PLO0003816 (cit. on p. 6).

[19] Nilay Patel. Sony says the 0GB PS3 is still using 90nm chips. Accessed
2017-08-24. 11th Nov. 2007. URL: https://www.engadget.com/2007/11/
03/sony-says-the-40gb-ps3-is-still-using-90nm-chips/ (cit. on
p. 11).

[20] John M. Pollard. ‘Monte Carlo Methods for Index Computation (mod p)’.
In: Mathematics of Computation 32.143 (1978), pp. 918-924. por: 10.2307/
2006496. URL: http://www.jstor.org/stable/2006496 (cit. on p. 6).

[21] TechlInsights. Nintendo Switch teardown. Accessed 2017-05-08. URL: http:
//techinsights.com/about-techinsights/overview/blog/nintendo-
switch-teardown/ (cit. on p. 2).

A Cortex-A53 Benchmarking Results

In this section we will provide an overview of our results with microbenchmark-
ing. As described in Section 3.1 we measured the execution times of various
instructions. We also looked at various combinations of instructions to learn
about pipelining behaviour and execution units.

A.1 Operations On “Normal” Registers

Our findings for AArch64 instructions are shown in Table 6. When measuring two
arithmetic instructions we noticed that they take the time as a single instruction.
This suggests that the Cortex-Ab3 has two ALUs and thus can compute two
arithmetic instructions at the same time. This does not hold for multiplication
or the memory operations and we suspect that the architecture only has one
multiplier and a single processing unit for memory access.

A.2 Operations On NEON Vector Registers

The NEON vector registers are available in different sizes. It is possible to access
them as 64-bit vectors or as 128-bit vectors. Tables 7 and 8 give an overview of
our results. For the 64-bit vectors we again notice that two arithmetic instructions
run in the same time as a single instruction. This however is not the case with

http://www.hardkernel.com/main/products/prdt_info.php?g_code=G145457216438
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G145457216438
https://doi.org/10.1007/PL00003816
http://dx.doi.org/10.1007/PL00003816
http://dx.doi.org/10.1007/PL00003816
https://www.engadget.com/2007/11/03/sony-says-the-40gb-ps3-is-still-using-90nm-chips/
https://www.engadget.com/2007/11/03/sony-says-the-40gb-ps3-is-still-using-90nm-chips/
https://doi.org/10.2307/2006496
https://doi.org/10.2307/2006496
http://www.jstor.org/stable/2006496
http://techinsights.com/about-techinsights/overview/blog/nintendo-switch-teardown/
http://techinsights.com/about-techinsights/overview/blog/nintendo-switch-teardown/
http://techinsights.com/about-techinsights/overview/blog/nintendo-switch-teardown/

14 REFERENCES

Table 6. Hypothesised instruction characteristics for instructions operating on registers.
Latencies are including the issue cycles. Many instructions can be dual-issued.

Instruction Mnemonic Issue cycles Latency (cycles)
Exclusive Or eor 1 1
And and 1 1
Or orr 1 1
Or Not orn 1 1
Addition add 1 1
Subtraction sub 1 1
Multiplication mul 2 4
Load ldr 1 1
Load Pair 1ldp 2 first: 2, second: 3
Store str 1 —
Store Pair stp 2 —

the 128-bit vectors. This suggests that there are two 64-bit execution units that
are combined for the 128-bit values.

Load and store operations again do not execute in parallel and we suspect
there is only one load-store-unit. It is possible to pair up an arithmetic operation
with a load or store.

B The ECC2K-130 Challenge Parameters

The Certicom ECC2K-130 challenge is defined in [10, 11]. The challenge is to
find integer k such that @ = [k]P on the Koblitz curve y? + xy = 23 + 1 defined
over Fai31. The group order |E(Faus1)| = 41, where [is the 129-bit prime number

1 = 680564733841876926932320129493409985129.

The coordinates of P and @) are given in a polynomial-basis representation of
Fy[2]/(F) where F(z) = 231 4+ 213 4 22 + 2 + 1. They are represented below as
hexadecimal bit strings with respect to this basis.

P, = 051C99BFA6F18DE467C80C23B98C7994AA
P, = 042EA2D112ECEC71FCF7EO0OD7EFC978BD
@z = 06C997F3ETF2C66A4A5D2FDA13756A37B1
)y = 04A38D11829D32D347BDOCOF584D546E9A

REFERENCES 15

Table 7. Hypothesised instruction characteristics for instructions operating on 64-bit
vectors. Latencies are including the issue cycles. Arithmetic operations can be issued
together with other arithmetic instructions or with a load or store operation.

Instruction Mnemonic Issue cycles Latency (cycles)
Exclusive Or eor 1 1
And and 1 1
Or orr 1 1
Or Not orn 1 1
Addition add 1 2
Subtraction sub 1 2
Multiplication mul 1 4
Load 1ldr 2 2
Load Pair 1dp 4 first: 3, second: 4
Store str 2 —
Store Pair stp 4 —

Table 8. Hypothesised instruction characteristics for instructions operating on 128-bit
vectors. Latencies are including the issue cycles.

Instruction Mnemonic Issue cycles Latency (cycles)
Exclusive Or eor 1 1
And and 1 1
Or orr 1 1
Or Not orn 1 1
Addition add 1 2
Subtraction sub 1 2
Multiplication mul 1 4
Load 1ldr 2 3
Load Pair 1ldp 4 first: 4, second: 5
Store str 2

Store Pair stp 4 —

	Energy-Efficient ARM64 Cluster with Cryptanalytic Applications

