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So you want to break crypto

1. Investigate attacks

2. Implement attacks in software
3. ???
4. Profit

3/19 Thom Wiggers



So you want to break crypto

1. Investigate attacks
2. Implement attacks in software

3. ???
4. Profit

3/19 Thom Wiggers



So you want to break crypto

1. Investigate attacks
2. Implement attacks in software
3. ???

4. Profit

3/19 Thom Wiggers



So you want to break crypto

1. Investigate attacks
2. Implement attacks in software
3. ???
4. Profit

3/19 Thom Wiggers



So you want to break crypto

1. Investigate attacks
2. Implement attacks in software
3. Run software on hugely expensive clusters
4. Profit
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Typical Platforms

“Desktop” CPUs

• Easy to program
• $$$$$
• Fairly high-power
• Fast with modern CPU

extensions (SSE, AVX2)

GPUs

• Harder to program
• $$$$$
• Very high-power
• Much faster than CPUs

on certain workloads

FPGAs

• Very hard to program
• $$$$$–$$$$$
• Low power
• Much, much faster than

CPUs on certain
workloads

Image: CC-BY-SA Xilinx
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Atypical platform

“Mobile” CPUs

• Smartphones and IoT
• Easy to program for
• $$$$$
• Low power
• OK speeds?

ODROID-C2 devboard
Image: CC-BY-SA Hardkernel
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ODROID-C2

• Cortex-A53 CPU
• 64-bit Quad-Core, 1536

MHz
• ARMv8
• 2 GiB RAM
• US$ 46

ODROID-C2 devboard
Image: CC-BY-SA Hardkernel
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Shopping List

Item Unit cost (USD) Number Total cost

ODROID-C2 $ 46 20 $ 920
5V Power Supply $ 5 20 $ 100
Micro-SD cards $ 17 20 $ 340
LAN cables $ 1 21 $ 21
24-port switch (TL-SG1024D) $ 85 1 $ 85

Total $ 1466
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Rack

Figure: The assembled Lego “rack”. Cable management remains a subject for
further investigation.
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ECC2K-130

• Challenge Curves put out by Certicom in 1997 [Cer].

• Smaller challenges broken earlier (last 109-bit one in 2004).
• Two curves remaining in Level I

– Curve over Fp, p a 131-bit prime
– Curve over F2131 , a Koblitz curve.

• 2009’s Breaking ECC2K-130 [Bai+09] report describes how to attack
the Koblitz curve.

• The attack is based on Pollard’s Rho for discrete logarithms [Pol78].
• They describe highly optimised implementations, speeds and

estimates for CPUs, PS3s, GPUs and FPGAs.
• To compare the ODROID-C2 to these platforms we should optimise

ECC2K-130 for the Cortex-A53.

9/19 Thom Wiggers



ECC2K-130

• Challenge Curves put out by Certicom in 1997 [Cer].
• Smaller challenges broken earlier (last 109-bit one in 2004).

• Two curves remaining in Level I

– Curve over Fp, p a 131-bit prime
– Curve over F2131 , a Koblitz curve.

• 2009’s Breaking ECC2K-130 [Bai+09] report describes how to attack
the Koblitz curve.

• The attack is based on Pollard’s Rho for discrete logarithms [Pol78].
• They describe highly optimised implementations, speeds and

estimates for CPUs, PS3s, GPUs and FPGAs.
• To compare the ODROID-C2 to these platforms we should optimise

ECC2K-130 for the Cortex-A53.

9/19 Thom Wiggers



ECC2K-130

• Challenge Curves put out by Certicom in 1997 [Cer].
• Smaller challenges broken earlier (last 109-bit one in 2004).
• Two curves remaining in Level I

– Curve over Fp, p a 131-bit prime
– Curve over F2131 , a Koblitz curve.

• 2009’s Breaking ECC2K-130 [Bai+09] report describes how to attack
the Koblitz curve.

• The attack is based on Pollard’s Rho for discrete logarithms [Pol78].
• They describe highly optimised implementations, speeds and

estimates for CPUs, PS3s, GPUs and FPGAs.
• To compare the ODROID-C2 to these platforms we should optimise

ECC2K-130 for the Cortex-A53.

9/19 Thom Wiggers



ECC2K-130

• Challenge Curves put out by Certicom in 1997 [Cer].
• Smaller challenges broken earlier (last 109-bit one in 2004).
• Two curves remaining in Level I

– Curve over Fp, p a 131-bit prime

– Curve over F2131 , a Koblitz curve.
• 2009’s Breaking ECC2K-130 [Bai+09] report describes how to attack

the Koblitz curve.
• The attack is based on Pollard’s Rho for discrete logarithms [Pol78].
• They describe highly optimised implementations, speeds and

estimates for CPUs, PS3s, GPUs and FPGAs.
• To compare the ODROID-C2 to these platforms we should optimise

ECC2K-130 for the Cortex-A53.

9/19 Thom Wiggers



ECC2K-130

• Challenge Curves put out by Certicom in 1997 [Cer].
• Smaller challenges broken earlier (last 109-bit one in 2004).
• Two curves remaining in Level I

– Curve over Fp, p a 131-bit prime
– Curve over F2131 , a Koblitz curve.

• 2009’s Breaking ECC2K-130 [Bai+09] report describes how to attack
the Koblitz curve.

• The attack is based on Pollard’s Rho for discrete logarithms [Pol78].
• They describe highly optimised implementations, speeds and

estimates for CPUs, PS3s, GPUs and FPGAs.
• To compare the ODROID-C2 to these platforms we should optimise

ECC2K-130 for the Cortex-A53.

9/19 Thom Wiggers



ECC2K-130

• Challenge Curves put out by Certicom in 1997 [Cer].
• Smaller challenges broken earlier (last 109-bit one in 2004).
• Two curves remaining in Level I

– Curve over Fp, p a 131-bit prime
– Curve over F2131 , a Koblitz curve.

• 2009’s Breaking ECC2K-130 [Bai+09] report describes how to attack
the Koblitz curve.

• The attack is based on Pollard’s Rho for discrete logarithms [Pol78].
• They describe highly optimised implementations, speeds and

estimates for CPUs, PS3s, GPUs and FPGAs.
• To compare the ODROID-C2 to these platforms we should optimise

ECC2K-130 for the Cortex-A53.

9/19 Thom Wiggers



ECC2K-130

• Challenge Curves put out by Certicom in 1997 [Cer].
• Smaller challenges broken earlier (last 109-bit one in 2004).
• Two curves remaining in Level I

– Curve over Fp, p a 131-bit prime
– Curve over F2131 , a Koblitz curve.

• 2009’s Breaking ECC2K-130 [Bai+09] report describes how to attack
the Koblitz curve.

• The attack is based on Pollard’s Rho for discrete logarithms [Pol78].

• They describe highly optimised implementations, speeds and
estimates for CPUs, PS3s, GPUs and FPGAs.

• To compare the ODROID-C2 to these platforms we should optimise
ECC2K-130 for the Cortex-A53.

9/19 Thom Wiggers



ECC2K-130

• Challenge Curves put out by Certicom in 1997 [Cer].
• Smaller challenges broken earlier (last 109-bit one in 2004).
• Two curves remaining in Level I

– Curve over Fp, p a 131-bit prime
– Curve over F2131 , a Koblitz curve.

• 2009’s Breaking ECC2K-130 [Bai+09] report describes how to attack
the Koblitz curve.

• The attack is based on Pollard’s Rho for discrete logarithms [Pol78].
• They describe highly optimised implementations, speeds and

estimates for CPUs, PS3s, GPUs and FPGAs.

• To compare the ODROID-C2 to these platforms we should optimise
ECC2K-130 for the Cortex-A53.

9/19 Thom Wiggers



ECC2K-130

• Challenge Curves put out by Certicom in 1997 [Cer].
• Smaller challenges broken earlier (last 109-bit one in 2004).
• Two curves remaining in Level I

– Curve over Fp, p a 131-bit prime
– Curve over F2131 , a Koblitz curve.

• 2009’s Breaking ECC2K-130 [Bai+09] report describes how to attack
the Koblitz curve.

• The attack is based on Pollard’s Rho for discrete logarithms [Pol78].
• They describe highly optimised implementations, speeds and

estimates for CPUs, PS3s, GPUs and FPGAs.
• To compare the ODROID-C2 to these platforms we should optimise

ECC2K-130 for the Cortex-A53.

9/19 Thom Wiggers



Cortex-A53 characteristics

• ARMv8-A architecture
• 32 registers
• ARM NEON extensions

– 32 128-bit vector registers

No detailed instruction characteristics are available
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How to figure them out

• We have a cycle counter
• Idea: write small (micro) programs and measure how long they take

(benchmarking).

measure_load:
mrs x17, PMCCNTR_EL0 ; store cycle counter at x17
ldr q0, [x0] ; load q0 from address x0
mrs x18, PMCCNTR_EL0 ; store cycle counter at x18
sub x0, x18, x17 ; cycles spent = x18 - x19
ret

11/19 Thom Wiggers



Benchmark results

Table: Hypothesised 128-bit vector instruction characteristics on the Cortex-A53.
Latencies are including the issue cycles. ldr and ldp can be paired with a single
arithmetic instruction for free.

Instruction Issue cycles Latency (cycles)

Binary arithmetic (eor, and) 1 1
Addition (add) 1 2
Load (ldr) 2 3
Store (str) 1 —
Load pair (ldp) 4 3, 4
Store pair (stp) 2 —

12/19 Thom Wiggers
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Execution Pipelines

ldr q0, [x0]
eor v1.16b, v1.16b, v1.16b

Instruction Issue cycles Latency (cycles)

Binary arithmetic (eor, and) 1 1
Load (ldr) 2 3

13/19 Thom Wiggers



Bitslicing

a =
(
a4 a3 a2 a1 a0

)
b =

(
b4 b3 b2 b1 b0

)
c =

(
c4 c3 c2 c1 c0

)
d =

(
d4 d3 d2 d1 d0

)
...
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Bitslicing
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Optimising n-bit binary polynomial multiplications

• Schoolbook approach: O(n2)

• Karatsuba [KO63]: O(nlog2(3))

– Split A, B in an upper (Ah,Bh) and lower part (Al ,Bl)
– Compute C = A · B as

C = 2nAh · Bh + 2n/2(Ah + Al) · (Bh + Bl) + Al · Bl

• Repeat recursively
• You can get rid of a few operations by using Refined

Karatsuba [Ber09].

I used Schwabe and Hutter’s approach [HS15] for scheduling this in an
efficient way.
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Energy Usage

Item Watts

ODROID-C2 Idle 2.3 W
CPU load 5.3 W

Switch 13 W

20 ODROID-C2s Idle 47 W
CPU load 108 W

Complete System Idle 59 W
CPU load 122 W
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Platform comparison

Table: ECC2K-130 on various platforms [Bai+09; Ber+10; Bos+10; Fan+10]

Type Instance Iters/s
(×106)

Watts Watts /
(106

iters/s)

CPU Core 2
QX6850

22.45 130 W 5.8

CPU E5–2630L v4 61 55 W 0.9
GPU GTX 295 63 289 W 4.6
PS3 Cell CPU 25.57 200 W 7.8
FPGA Xilinx

XC3S5000
111 5 W 0.045

ARM ODROID-C2 3.94 5 W 1.3
Cluster 79 122 W 1.5
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Conclusions

• FPGAs are still the fastest choice

– However, they are much harder to program.
• Mobile CPUs are pretty good
• More general-purpose hardware allows for easier programming
• Could also be used for teaching applications for e.g. distributed

algorithms.

Cluster management software, benchmarking software and optimised
multipliers available at thomwiggers.nl/research/armcluster/.

Thank you for your attention.
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Pollard’s Rho

Elliptic-curve-discrete-logarithm Problem
Given points P,Q where P = [k]Q, find integer k .

Best known attack is Pollard’s Rho [Pol78]: try to find
R = aP + bQ = a′P + b′Q.

1. Pick a, b at random and let R0 = aP + bQ.
2. Apply your iteration function

Ri+1 = σj (Ri ) + Ri ,

where j = HW ((xRi ) /2 mod 8) + 3.
HW is the Hamming Weight function and σ is the Frobenius
endomorphism, so σj ((x , y)) = (x2j

, y2j

).

3. Repeat until you get Ri = a′P + b′Q = R0 with b 6= b′, k = a′−a
b′−b .

For ECC2K-130 an expected 260.9 iterations are needed [Bai+09].
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Distributed Pollard’s Rho [OW99]

1. Do random walks on K machines.

2. Have them walk until they reach a Distinguished Point.

– In our case, when HW (xP) ≤ 34.

3. Send the Distinguished Point (R, a, b) to the server
4. Server checks if has already found R with different b.

This gets us a Θ(K ) speedup.
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Number of operations per iteration

Iteration function
Ri+1 = σj (Ri ) + Ri , where j = HW ((xRi ) /2 mod 8) + 3.
HW is the Hamming Weight function and σ is the Frobenius
endomorphism, so σj ((x , y)) = (x2j

, y2j

).

• 3 ≤ j ≤ 10, so at most 20 squarings and 1 point addition.

• In affine coordinates, this is one inversion, two multiplications, 21
squarings and seven additions over the field.

• Montgomery’s trick [Mon87] allows, by batching up N inversions, to
instead do 3N − 3 more mults and only 1 inversion.

22/19 Thom Wiggers



Number of operations per iteration

Iteration function
Ri+1 = σj (Ri ) + Ri , where j = HW ((xRi ) /2 mod 8) + 3.
HW is the Hamming Weight function and σ is the Frobenius
endomorphism, so σj ((x , y)) = (x2j

, y2j

).

• 3 ≤ j ≤ 10, so at most 20 squarings and 1 point addition.
• In affine coordinates, this is one inversion, two multiplications, 21

squarings and seven additions over the field.

• Montgomery’s trick [Mon87] allows, by batching up N inversions, to
instead do 3N − 3 more mults and only 1 inversion.

22/19 Thom Wiggers



Number of operations per iteration

Iteration function
Ri+1 = σj (Ri ) + Ri , where j = HW ((xRi ) /2 mod 8) + 3.
HW is the Hamming Weight function and σ is the Frobenius
endomorphism, so σj ((x , y)) = (x2j

, y2j

).

• 3 ≤ j ≤ 10, so at most 20 squarings and 1 point addition.
• In affine coordinates, this is one inversion, two multiplications, 21

squarings and seven additions over the field.
• Montgomery’s trick [Mon87] allows, by batching up N inversions, to

instead do 3N − 3 more mults and only 1 inversion.

22/19 Thom Wiggers



References I

ODROID-C2. Accessed 2017-04-03. URL:
http://www.hardkernel.com/main/products/prdt_
info.php?g_code=G145457216438.

ARM Limited. ARM Architecture Reference Manual ARMv8,
for ARMv8-A architecture profile. 4th Sept. 2013.

23/19 Thom Wiggers

http://www.hardkernel.com/main/products/prdt_info.php?g_code=G145457216438
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G145457216438


References II

Daniel V. Bailey, Lejla Batina, Daniel J. Bernstein,
Peter Birkner, Joppe W. Bos, Hsieh-Chung Chen,
Chen-Mou Cheng, Gauthier Van Damme,
Giacomo de Meulenaer, Luis Julian Dominguez Perez,
Junfeng Fan, Tim Güneysu, Frank Gürkaynak,
Thorsten Kleinjung, Tanja Lange, Nele Mentens,
Ruben Niederhagen, Christof Paar, Francesco Regazzoni,
Peter Schwabe, Leif Uhsadel, Anthony Van Herrewege and
Bo-Yin Yang. Breaking ECC2K-130. Cryptology ePrint
Archive, Report 2009/514. 2009. URL:
https://eprint.iacr.org/2009/541/.

24/19 Thom Wiggers

https://eprint.iacr.org/2009/541/


References III

Daniel J. Bernstein, Hsieh-Chung Chen, Chen-Mou Cheng,
Tanja Lange, Ruben Niederhagen, Peter Schwabe and
Bo-Yin Yang. ‘ECC2K-130 on NVIDIA GPUs’. In: Progress in
Cryptology – INDOCRYPT 2010. Ed. by Guang Gong and
Kishan Chand Gupta. Vol. 6498. Lecture Notes in Computer
Science. Springer-Verlag, 2010, pp. 328–346. URL:
http://cryptojedi.org/papers/#gpuev1l.

Daniel J. Bernstein. ‘Batch Binary Edwards’. In: Advances in
Cryptology - CRYPTO 2009. Ed. by Shai Halevi. Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 317–336. ISBN:
978-3-642-03356-8. DOI: 10.1007/978-3-642-03356-8_19.
URL: https://cr.yp.to/papers.html#bbe.

25/19 Thom Wiggers

http://cryptojedi.org/papers/#gpuev1l
https://doi.org/10.1007/978-3-642-03356-8_19
https://cr.yp.to/papers.html#bbe


References IV

Joppe W. Bos, Thorsten Kleinjung, Ruben Niederhagen and
Peter Schwabe. ‘ECC2K-130 on Cell CPUs’. In: Progress in
Cryptology – AFRICACRYPT 2010. Ed. by Daniel J. Bernstein
and Tanja Lange. Vol. 6055. Lecture Notes in Computer
Science. Springer-Verlag, 2010, pp. 225–242. URL:
http://cryptojedi.org/papers/#cbev1l.

Certicom Corp. The Certicom ECC Challenge. Accessed
2017-04-03. URL:
https://www.certicom.com/content/certicom/en/the-
certicom-ecc-challenge.html.

26/19 Thom Wiggers

http://cryptojedi.org/papers/#cbev1l
https://www.certicom.com/content/certicom/en/the-certicom-ecc-challenge.html
https://www.certicom.com/content/certicom/en/the-certicom-ecc-challenge.html


References V

Junfeng Fan, Daniel V. Bailey, Lejla Batina, Tim Guneysu,
Christof Paar and Ingrid Verbauwhede. ‘Breaking Elliptic Curve
Cryptosystems Using Reconfigurable Hardware’. In: 2010
International Conference on Field Programmable Logic and
Applications. Aug. 2010, pp. 133–138. DOI:
10.1109/FPL.2010.34.

Michael Hutter and Peter Schwabe. ‘Multiprecision
multiplication on AVR revisited’. In: Journal of Cryptographic
Engineering 5.3 (2015), pp. 201–214. URL:
http://cryptojedi.org/papers/#avrmul.

Anatolii Karatsuba and Yu Ofman. ‘Multiplication of multidigit
numbers on automata’. In: Soviet Physics Doklady. Vol. 7.
1963, p. 595.

27/19 Thom Wiggers

https://doi.org/10.1109/FPL.2010.34
http://cryptojedi.org/papers/#avrmul


References VI

Peter L. Montgomery. ‘Speeding the Pollard and elliptic curve
methods of factorization’. In: Mathematics of computation
48.177 (1987), pp. 243–264.

Paul C. van Oorschot and Michael J. Wiener. ‘Parallel
Collision Search with Cryptanalytic Applications’. In: Journal
of Cryptology 12.1 (1999), pp. 1–28. DOI:
10.1007/PL00003816. URL:
http://dx.doi.org/10.1007/PL00003816.

John M. Pollard. ‘Monte Carlo Methods for Index
Computation (mod p)’. In: Mathematics of Computation
32.143 (1978), pp. 918–924. DOI: 10.2307/2006496. URL:
http://www.jstor.org/stable/2006496.

28/19 Thom Wiggers

https://doi.org/10.1007/PL00003816
http://dx.doi.org/10.1007/PL00003816
https://doi.org/10.2307/2006496
http://www.jstor.org/stable/2006496

	Introduction
	Building a cheap cluster
	The Cortex-A53
	Breaking ECC on the Cortex-A53
	Results and Comparison
	Appendix
	Overtime
	Pollard's Rho
	Operations

	References


