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Abstract

PR@ST is a contestant in the CAESAR competition for Authenticated Encryp-
tion. This thesis shows how PR@ST was optimised for the ARM11 microprocessor
architecture. By implementing PR@ST in assembly, a performance gain of 28%
to 48% was achieved. We also present a new implementation of MixSlices, one
of the sub-operations in PR@ST’s permute function. This new implementation
has 33% fewer arithmetic operations than the original version.
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Chapter 1

Introduction

Authenticated encryption (AE) schemes use symmetric keys to encrypt data
providing not only confidentiality but also integrity and authenticity [7]. Us-
ing these schemes avoids having to combine authentication and traditional,
confidentiality-only, encryption, something that has often led to vulnerabilities.
Some encryption functions even fail when combined with message authentica-
tion codes in certain ways, where that failure might even not be immediately
obvious [19].

A variant of AE are authenticated encryption with associated data (AEAD)
schemes [31]. These allow to also include information that does not need to be
encrypted but of which the integrity and authenticity needs to still be guaranteed.

The CAESAR (Competition for Authenticated Encryption: Security, Applic-
ability, and Robustness) competition was announced in January 2013 to help
select a portfolio of ciphers that “(1) offer advantages over AES-GCM and (2) are
suitable for widespread adoption” [13].

Optimised implementations on various platforms help show that an algorithm
is suitable for deployment across a wide range of platforms. While the first things
one might think of when considering uses of cryptography might be centred
around a PC running the amd64 architecture, secure algorithms are perhaps even
more widely used and needed in embedded platforms, smart cards, and mobile
devices.

In this thesis, I will show how I implemented the encryption algorithm
Pr@ST [18] on the ARMI11 platform. The ARM11 range of microprocessors powers
many devices, from older smartphones to game consoles such as the Nintendo
3DS [6, 16]. These 32-bit processors implement the ARMv6 instruction set. While
this architecture has since been replaced by the ARMv7 instruction set, there still
are billions of ARM11 microchips deployed. Over the third quarter of 2014 ARM
reported that still 3% of the 1.1 billion ARM chips shipped in that quarter were
ARM11, while in 2010 and 2011 ARM reported shipment of over half a billion
ARM11 microcontrollers per year [5, 3, 4].

In this thesis my goal was to implement PR@ST in such a way that it would
run as fast as possible, of course still protecting against timing attacks.

In Chapter 2, I will first briefly introduce and explain PR@ST and describe
some characteristics of the implementation platform. This will provide the
building blocks for Chapter 3, in which I will discuss how I optimised PrR@ST for
ARM and found a more efficient way of computing one of the components of the



PR@ST permutation function, MixSlices.
The resulting implementation can be found via https://thomwiggers.nl/
proest.
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Chapter 2

Preliminaries

2.1 Prost

In this section I will briefly summarise PR@ST’s permutation as described in [17].
I will be describing the PR@ST-128 version, which provides 128 bits of security.
PR@ST’s main operation is the PR@ST-permutation. This operation can be
combined in various ways to come up with the various modes of operation, such
as COPA [2], OTR! [28] and APE [1]. My optimisations focused on the permutation,
as it is the most expensive operation.
PRr@sT-128 has a 256-bit state s which is considered as a 4 x 4 x 16 three-
dimensional block
$0,0 So,1 S0,2 80,3
$1,0 S1,1 S1,2 S1,3
82,0 82,1 S22 523
$3,0 S3,1 S3,2 833
where each s, , is a 16-bit register. PR@ST’s authors adopted the nomenclature
of KEccAK [11] and call these registers lanes. In this work I will use register to
refer to a CPU register, and lane to refer to a 16-bit s, , of the state. The terms
row, column, slice, plane and sheet for the other parts of the state are described
in Figure 2.1 which was adopted from [17].

mis Nl N=Ns BN

(a) Row (b) Column (c) Lane d) Slice (e) Plane (f) Sheet (g) Axes

Figure 2.1: Nomenclature for state parts [17]

The permutation consists, in the PR@ST-128 case, of 16 rounds. The round
function R; : F2°¢ — F256 with 0 < i < 16, can be defined as

R;(x) = (AddConstants; o ShiftPlanes; o MixSlices o SubRows)(x).

LPR@ST-OTR was recently shown to be vulnerable to a related-key forgery attack by Do-
braunig, Eichlseder and Mendel [14].



In the following I use @ to denote the binary exclusive or operation, and A
to denote a binary and. “a << n” and “a >> n” mean that a is rotated n bits
to the left or to the right, respectively.

2.1.1 SubRows

The SubRows operation substitutes each row (a, b, ¢, d) of the state by a new row
(a/, b, d") where

(2.1)

2.1.2 MixSlices

The MixSlices operation mixes the slices of the state by xoring lanes according
to a matrix M. The result of applying MixSlices to a state s = (s),, will
result in a state s’ = (s'),, as in (2.2).

56,0 = 50,0D51,0D51,3DS22DS30D532Ds33
36,1 = 80,1 D S1,0D 52,3 D 83,0 D 83,3

36,2 = 80,2 81,1 D S2,0D S2,1 D S3,0

56,3 = 503D 812D 82,1 D S22®D 831

3/1,0 = 50,0 D S0,3D 51,0 D S2,0D S2,2 B S2,3D S3,2
3'1,1 = 80,0 D s1,1 D S2,0D S2,3D 833

311,2 = 50,1 D S1,2D 52,0 D 53,0 P 53,1

5’1,3 = 80,2 D 81,3DS21 D S3,1DS3,2 (2.2)
5/270 = S0,2D 81,0D 812D S1,3D S2,0D S3,0D S3,3
3’2,1 = 503D s1,0D51,3D S2,1 D S3,0

3’2,2 = 50,0 P S0,1 D S1,0D 22D s31

5/2,3 = 80,1 D S0,2 D S1,1 D S2,3D 83,2

3%,0 = 50,0 D S0,2D 80,3 D S1,2D 52,0 D 523D S30
s31 = 500D 503D 513D 520831

51/3,2 = 50,0D 51,0 51,1D 82,1 D S32

3%,3 = 80,1 D S1,1 D S1,2D S22 D 833

2.1.3 ShiftPlanes;

The operation ShiftPlanes; rotates each of the lanes in a plane of the state by
a a given amount. Each row is rotated by a number of bits given by the shift
vector, which is different for odd and even rounds.

For round 1, if 7 is even, the lanes in the first row are rotated by zero bits, in
the second row they are rotated by one bit, the third row’s lanes are rotated by
eight bits and the lanes in the last row are rotated by nine bits.



If 7 is odd, the lanes in the four rows are rotated by zero, two, four and six
bits, respectively.

2.1.4 AddConstants;

AddConstants;, the last operation in each round i of PR@ST, updates the state
s by adding a constant to each lane. There are two constants, ¢; = 027581 and
co = 0xb2c¢5. With index j, 0 < j < 16 enumerating the lanes, constant c; is
applied to even j and cs is applied to odd j. Before being applied, the constants
are rotated left by the round number i and by j.

Thus, AddConstants; applied to state s = (s);,, in round ¢ will result in a
state s’ = (5')g,y like (2.3).

50,0 50,0 ® (€1 K i << 0)
50,1 501 ® (02 i K 1)
50,2 502 @ (01 K i< 2)
sos | = | 503 @ (2 i 3) (2.3)
$1.0 51,0® (01 K i < 4)
53,3 53,3 ® (02 < i < 15)

2.2 ARM11

The ARM11 architecture is the only implementation of the ARMvV6 instruction
set. Four major variants have been released in the ARM11 family: the ARM1136,
ARM1156, ARM1176 and the ARM11MPcore variants [6]. All are available with
an optional floating-point unit. The technical characteristics, including cycle
timings, are described in the ARM11 reference manuals [23, 25, 24, 27, 26, 22]. The
instruction set is documented in the ARMV7 architecture reference manual® [21].
In this section I will briefly set out the most important characteristics that are
relevant to the rest of this work.

2.2.1 Registers

ARMI11 processors have a 32-bit instruction set. They provide sixteen 32-bit
registers to the programmer, although only fourteen are freely usable: one
register is used as the stack pointer and another is used as the program counter.

Registers can be considered as value on the display of an electronic calculator.
The CPU can use the values stored in registers immediately for arithmetic
operations, writing the result back to a register. In the ARM instruction set, it
can write the result back to any register, not just to one of the input registers.

Because there are only fourteen usable registers, a programmer will need to
carefully manage these registers. Running out of registers means he or she needs
to store values (“spill”) to memory. This can be compared to writing the value
shown on a calculator display onto a piece of paper: it takes a bit of time and
the next time you want to use that value, you will need to look it back up and

2ARM don’t publish a separate ARMv6 manual anymore except for the ARMv6-M range.



x1 = meml6[address_al] x1 = meml6[address_a]

x1 += 10 x2 = meml6[address_b]
x2 = meml16[address_b] x3 = meml6[address_c]
x2 += 10 x1 += 10

x3 = meml16[address_c] x2 += 10

x3 += 10 x3 += 10

(a) Latencies slow execution (b) Hiding load latencies
down

Program 2.1: Equivalent programs, but different execution times

type it back into the calculator. Doing this impacts performance, as extra cycles
need to be spent for the memory operations involved.

2.2.2 Pipeline

The ARM11 is a pipelined architecture, which means that the processor can work
on several instructions at the same time. Instructions take a certain amount of
cycles to complete. If their results are not immediately needed, the CPU will
work on other instructions. If however the result is immediately needed, the
CPU will wait for it to become available.

Most arithmetic instructions have a one-cycle latency, meaning the results
can be used by the next instruction immediately. Reading from memory has a 3
cycle latency, if the load is from cache, before the result becomes available.

This means that careful scheduling can drastically reduce execution time. In
Program 2.1, two equivalent programs are shown. They retrieve three sixteen-bit
values x1, z9, 3 from memory starting at address, and then add 10 to each of
these values. However in 2.1a, each time when 10 is added to the just loaded
value, the register is not available yet: loads have a three-cycle latency before
their result is available. This means that before we execute x1 += 10, we are
already on the fourth cycle! In 2.1b, we spend the cycles we need to wait for z;
to become available by preloading x4 and x3. Cleverly scheduling instructions
results in a much faster program: while the naive example costs twelve cycles,
the example hiding latencies only costs six cycles.

2.2.3 Multiword load/stores

While individual registers have a size of 32 bits, the CPU and memory are
connected through a 64-bit bus. The 1drd instruction allows us to load up to
64 bits from memory in the same amount of time it would take to load a single
32-bit value. The bits need to be consecutive in memory, and can only be loaded
to two consecutive registers. We can similarly store two registers to 64 bits in
memory using the strd instruction.

Similarly we can perform even wider loads with the instruction 1dm. This
instruction can load an arbitrary number of registers, from 1 to 14 registers,
from memory in one compute cycle on all ARM11 implementations [23, 25, 24,
27, 26, 22].

These operations are more restricted though: while the registers need not
be consecutively numbered, they are loaded to in order: the lowest numbered



register is loaded with the first 32 bits from memory, the second lowest numbered
register is loaded with bits 33-64, and so on. These extra wide loads also come
with an extra latency for the results to become available and lock registers for a
number of cycles. The related store operation, with similar restrictions, is stm.

The extra wide loads and stores are further limited by not being able to
manipulate the address register by adding an arbitrary amount, these instructions
only support optionally incrementing it by the width of the load. Regular
load/store operations are more flexible and allow for an offset to be added to the
value of the register. The result is then used as the address for memory access
and can optionally be written back to the register.

2.2.4 Free shifts and rotations

The ARMV6 architecture provides instructions that allow to rotate or shift registers
by an arbitrary amount, spending 1 computation cycle.

In addition, however, all arithmetic instructions support having the second
input value rotated or shifted an arbitrary distance. These rotations or shifts
are essentially free; they only require that the register which is to be rotated is
available one cycle earlier than a non-modified input would need to be. This is
because the shifter requires the input value to be available one stage earlier in
the pipeline.

2.2.5 Cycle counter

As described in [32], the ARM11 CPUs have a cycle counter, which can only
be accessed from kernel mode. Bernstein published source code for a Linux
kernel module which exposes the cycle counter through a device file [8]. The
SUPERCOP [10] benchmarking suite for cryptographic software supports using
this device file. SUPERCOP was used for all final benchmarks. For development
purposes I took the cycle measurement code from SUPERCOP and put it in my
OWn Wrapper.

A more conveniently packaged version of this cycle counter can be found via
https://thomwiggers.nl/proest/.

2.3 Qhasm

As one experienced with programming assembly might have already noticed from
program 2.1, I have not used pure ARM assembly. I have instead used a prepro-
cessor called ghasm. Qhasm is prototype software developed by Bernstein [9]. It
has a slightly friendlier syntax than regular assembly, which resembles C. More
significantly though, ghasm allows a programmer to not worry about register
allocation: it features an allocator which can keep track of which registers are
used to store what variable. The programmer still needs to take care of not using
more variables at a time than there exist registers: ghasm will not automatically
spill variables to memory to free registers.

Otherwise ghasm instructions are a one-to-one mapping to assembly instruc-
tions. Anything appearing after a # is considered a comment and ignored.

I have made a couple of small modifications to ghasm to better support
the target platform and fix some bugs. The version I used to compile my


https://thomwiggers.nl/proest/

implementation of PR@ST can be found via https://thomwiggers.nl/proest.
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Chapter 3
Optimising Prgst

In this chapter I will describe how I optimised the different functions and how I
finally arrived at my implementation on ARM.

First I am going to explain how I treated every component of the PR@ST
permutation function. Then I will explain how these were combined to save
additional cycles. I will treat them in the order in which they are applied to the
state.

3.1 SubRows

The SubRows operation is an S-box permutation that can also be described as
the linear operation described earlier in (2.1). It applies that operation to every
row in the PR@ST state s.

This operation was unrolled to get rid of the cycles that would otherwise
be spent on jumps and loop bookkeeping (such as incrementing indexes and
comparisons). The biggest gain however was obtained by a clever loading strategy
as detailed in the next subsection.

3.1.1 Loading two lanes into one CPU register

The lanes in the PR@ST state are each 16 bits long, while the CPU registers
are each 32 bits in size. Considering that the lanes are stored consecutively
in memory, it is possible to load two lanes into one register in one load. This
obviously saves us from one register and one load that we would need to do if we
naively loaded each lane separately into one register. This however does mean
that we need to take care how to apply operations to this register. This can be
achieved by using the free shifts previously described in Subsection 2.2.4.

It is possible to shift a register before it is applied as an input. This means
to access the lane stored in the upper 16 bits of a register, we can shift it to the
right by 16 bits. If we do not shift a register because we want to use the lane
stored in the lower 16 bits of the register, we need to take care that the upper
16 bits of the result will contain some part of the lane that was still stored in
the upper 16 bits. To get rid of this garbage, 16-bit stores (strh) can be used
because they do not consider the upper 16 bits of a register and thus store the
result modulo 2'6.

10



# a=s_{0,0}, b = s_{0,1%}

# ¢ = s_{0,3}

#a =c” (a&b)

a_and_b = mem32[address_of_s]

# b is in the upper part of a_and_b
c_and_d = mem32[address_of_s + 4]
newa = a_and_b & (a_and_b >>> 16)
newa "= c_and_d

# only write back the lower 16 bits
mem16 [address_of_s] = newa

Program 3.1: An example part of SubRows using two lanes in one register.

Using this technique will also allow to apply the multiword loads from Section
2.2.3, since they would also load two lanes per register loaded. If we wanted
to use these loads, but not have two lanes per register, we would need to do
additional operations to extract half of the lanes to their own registers.

In Program 3.1 a part of SubRows is shown where @’ = ¢® (aAb) is calculated.
The two lanes, one register approach is applied to load lanes a and b into register
a-and_b. To calculate a Ab, a_and_b is ANDed with itself rotated by 16 bits. This
means a A b will be in the lower 16 bits of the register. Then, this result is XORed
with c_and_d to complete the computation. Finally the result in the lower 16
bits, which now contain ¢ @ (a A D), is written back to memory. The upper 16
bits, now containing d ® (b A a), are discarded: they are unfortunately not of
any use.

3.2 MixSlices

MixSlices is by far the most expensive operation in PR@ST’s permutation. It is
a matrix multiplication that can be represented by equation (2.2). This system
has 72 XOR operations.

XOR is commutative and associative, which allows us to re-order the inputs
in any way we like. Several of the output lanes share some of the input lanes
they use, meaning there are combinations of lanes that could be reused in
several multiplications. For example, sj o and s ; share the intermediate result
51,0 D $3,0 D s3,3 (3.1).

/
800 = 50,0 D81,0D51,3DS22D830Ds32DS33 (3.1)

/
50,1 = 50,1 ©S1,0D 523DS3,0DS33

This of course leads to the question: can we find a way to exploit this feature
so that we can find the program with the maximum amount of reuse? Or in
other words: what is the shortest implementation of MixSlices?

3.2.1 Optimisation problem

We can also represent a function such as (2.2) as a program with a sequence of
lines of the shape u = v ®w where v and w are either from the set of input values
or one of the previous lines of the program. In fact, this notation is exactly how

11



one would implement MixSlices, because the arithmetic instructions in ARM
assembly look exactly like that. Programs of this form over Fy are known as
linear straight-line programs [15, 12].

Unfortunately, finding the shortest linear program (SLP) is known to be
NP-hard. Boyar, Matthews and Peralta additionally show that SLP is MAX-
SNP-complete [12]. MAXSNP is a class of optimisation problems that can be
approximated with some bounded error [29]. In other words, finding the shortest
version of MixColumns is going to be very computationally expensive.

3.2.2 Trying to find the shortest program

Fuhs and Schneider-Kamp show in [15] that it is possible to transform the SLP
problem to a different kind of problem in MAXSNP: the boolean satisfiability
problem (SAT). SAT, the problem of finding a certain valuation that makes
a boolean formula true, is NP-complete. However, solving SAT problems is
something that scientists have gotten rather good at, as illustrated by various
competitions [33].

To define SLP as the decision problem “does a program of k lines exist” in
SAT, Fuhs and Schneider-Kamp encode functions such as the one for MixSlices
with n inputs and m outputs as a m X n matrix A, where every row represents
one of the outputs and every column one of the inputs. A, , =1 iff in output z,
input y is used. They then define matrix B as a k x n matrix, where b, , =1
iff in line z input variable y is used. A matrix C' sized k x k is defined where
Cz,y = 1 iff intermediate result y is reused in line = of the program. Finally, they
define a matrix f to map intermediate results to outputs. f is also encoded as a
matrix.

The decision problem is then to find valuations of B, C' and f such that a set
of constraints still hold. These constraints are boolean formulae that can only
be satisfied by valid programs.

The logic encoding Fuhs and Schneider-Kamp give is still in first-order logic.
This needed to be transformed into something SAT solvers could understand.
To achieve this, I developed a Java program that allows to input programs
as a matrix A and try to solve the SLP-SAT problem for a certain length k.
SAT4j [20] was used to transform the problem from predicate logic to a SAT
problem, which was then solved also using SAT4j. The design of this program is
further described in Appendix A.1.

Unfortunately, the smallest k& proved to be out of reach with this implement-
ation of the SLP-SAT problem. The smallest & is expected to be somewhere in
the upper 40s, based on our results discussed in Section 3.2.3. The size of the
constraints is O(n - k2) [15], but it appeared that the addition of new constraints
to the SAT solver got more expensive faster than that. The biggest k feasible on
the fastest machine available' was only 26. This machine was unable to provide
an answer even after running for over two weeks. This might be because showing
a problem is unsatisfiable is much harder than showing it is satisfiable.

IThis machine had 3 Terabytes of RAM and 120 Intel Xeon E7-4870 v2 cores running at
2.30GHz. Most of SAT4j is however single-threaded.

12



3.2.3 Approximating the shortest program

Boyar et al. give a heuristic which allows to approximate the shortest SLP
problem. The basic idea of this heuristic, described in [12], can be described as
follows: define matrix S in which we will store previously produced functions.
S has n columns. s, , = 1 iff the yth input variable is a part of the function
defined by row x. We also need a matrix A containing the program, similar to
matrix A in the SLP-SAT problem described above.

S is then initialised to contain the input variables xg, - -- , x,—1, so in the case
of n=3,5=(1,0,0]10,1,0],[0,0,1]). Then, we consider a distance function
that for a given row in A determines how many combinations of rows in S need
to at least be made to arrive at the row in M.

The program then will generate new rows in S as combinations of rows in S,
minimising the sum of the distance function. Some optimisations are used to
achieve better performance. Finally, when the sum of the distance function is
known, S can be transformed back into a linear straight-line program.

I implemented the above in Python 3 and its implementation is discussed in
Appendix A.2. It was, after running for four days on a 24-core machine, able
to find a much shorter implementation of MixSlices using only 48 XORs. This
function can be found in A.3.

It proved infeasible to verify this result using the SAT-SLP program from
the previous section, since encoding a problem where k£ = 48 was too expensive.

3.2.4 Implementing the shorter program

In the naive implementation of MixSlices, intermediate variables have a fairly
short life span. This means that a lot of registers remain free for us to keep
more of other things in registers, such as input values and results.

In these shorter straight-line programs, however, intermediate variables have
a considerably longer life. After all, we are able to get rid of work we were doing
multiple times by reusing those intermediate results. The side effect of having a
shorter program is thus a potential increase in the number of loads and stores.

To minimise this effect, I tried to reschedule the instructions of the generated
program so that intermediate values are generated as close to where they are
first used as possible.

The ARM architecture fortunately proved to have enough registers, if we used
the stack pointer as described in Section 3.5, so that the problem of increased
register pressure did not negate our gain of 24 XORs too much.

3.3 ShiftPlanes

As described in Section 2.1.3 ShiftPlanes rotates each of the lanes in each plane
by a specified constant. In even and odd rounds, these constants are different.
Unfortunately, rotating a 16-bit lane on a 32-bit architecture is a bit of a
hassle. A normal ror rotation would not give us the correct result, because it
would rotate the lower bits into the upper 16 bits of the register. It would also
shift zeros (or whatever was in the upper half) into the lower half of the register.
Rotation of a 16-bit value can be done by adding the register to itself, shifted
by 16 bits, and then rotating the whole register. This is shown in Program 3.2.

13



Program 3.2: Rotating a 16-bit value by x

When implementing SHA-3 candidates on ARM, Schwabe, Yang and Yang
were able to hide many rotations by making use of the case that arithmetic
instructions that look like

a=(b>>n1) ®(c>>ns)
you can instead compute
a=b® (c>> (ng—mny)).

This last instruction can use the free rotations that ARM supports, since n; and
ny are both constants at compile time. You still need to rotate a by n; later,
but that can often be cancelled out or hidden in other instructions [32].

The operations in PR@ST do not immediately look like a = (b > ny) @ (¢ >>
ny). When considering ShiftPlanes and AddConstants together, however, one
sees that the added rotated constant in AddConstants resembles the ¢ > no
part. The rotation in ShiftPlanes then forms the b >> 2 part. We could thus
combine these two to not perform the rotations in ShiftPlanes.

If we adopt this approach, however, we will need to get rid of the implicit
rotation by n; that will still be left in the results of these merged rotations.
We would need to get rid of those before they get distributed over many other
variables.

That means the implicit rotations need to be eliminated the next time
SubRows is done. This however would cause problems with our “two lanes in
one register”-approach from Section 3.1.1. This approach thus could not be used
in this implementation of PR@ST. It perhaps would be useful in the PR@ST-256,
which has 32-bit lanes. Those can be more easily rotated.

3.4 AddConstants

AddConstants is the final operation in the PR@ST permutation function. As
described in Equation (2.3), it adds one of two rotated constant to each lane.

These constants ¢; and ¢y are first rotated by the round number. Because
the first time we need co it needs to be rotated by 1, we can instead set the
constant ¢y to co << 1 at compile time and thus save one instruction.

Because we want to load two lanes into one register every time, we need
half of the free rotations we can get from the ARM architecture to shift the
correct value in place. That means we still need to explicitly rotate one of the
constants every time, instead of using free rotations. This means we still need
to do nine explicit rotations: two for the initial rotation by the round number,
and 7 rotations of ¢y we can not do inline in instructions.
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3.5 Obtaining an extra register

A single extra register can have a significant effect on performance, because it
allows to keep more intermediate values in registers.

The stack pointer points to a section of memory where values can be stored.
Our functions also get such a pointer, pointing to the start of the memory where
the PR@ST state is stored. If we allocate extra room after the PR@ST state, we
can use this pointer as a memory reference point to replace the stack pointer.
We simply store the stack pointer and any values we would have stored on the
stack, in the space behind the PR@ST state.

An alternative approach would have been to put the entire PR@ST state on
stack so we would be able to use the register that would otherwise be holding
the pointer to the state. However, this would have cost us more loads and stores.

The extra register was especially useful in the short implementation of
MixSlices.

In case of interrupts, the stack is normally used to store the program state
for when it is resumed. ARM CPUs however use a banked copy of the stack
pointer to do this [21]. This allows us to use it without breaking the operating
system.

3.6 Inlining the Prgst operations

Calling a function comes with a bit of overhead: the return address is put on
the stack, variables of the calling function need to be stored somewhere safely
and when the function is done all this needs to be restored. We can reduce this
overhead by putting the operations consecutively in the same function.

Having the operations in the same function also enables us to do some nice
things because we can keep intermediate values in memory between operations.
This saves us quite a few loads and stores. Operations previously also had to
retrieve results that were spilled to memory and then put those back into the
PRr@ST state. In an unrolled PR@ST, later calls can just retrieve the temporary
value from memory.

It also helps us avoid most of the rotations we had to do in AddConstants,
because we can use the results from ShiftPlanes instead of loading new values.
Because these intermediate results only contain one lane per register we can use
the free rotation in the instructions also for these values.

Finally, the unrolling allows to hide latencies better. One can start retrieving
data needed for the next function and then fill up the load latency with the final
processing of the result of the previous function. This is especially important
with the long result latencies introduced by multi-word loads.
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Chapter 4

Results and comparison

4.1 Benchmark results

All benchmark results were obtained by using the SUPERCOP [10] benchmarking
suite for cryptographic systems running on a Raspberry Pi model B overclocked
to run at 800MHz. Frequency scaling was disabled. The cycle counter still
reports accurate results even when overclocked. We used the 2014-11-24 release
of SUPERCOP, which was the most recent release at the time of writing. It was
tweaked to not attempt to benchmark using options that are irrelevant on the
ARM11, such as 64-bit modes and PowerPC and x86-only optimisations and
tunings. distcc was used to offload compilation to a more powerful computer,
an Intel x64 machine set up to cross-compile for ARMv6. The version of gcc used
was 4.9.3 20141224 (prerelease). The cycle counter previously described in
Section 2.2.5 was loaded to facilitate benchmarking.

The benchmark results can be found in Tables 4.1, 4.2 and 4.3. The reported
figure is the “number of cycles used by a typical cryptographic operation” as
reported by SUPERCOP. Also included in each table is the compiler flags used to
get the reported figures.

The implementation of PR@ST has been submitted to the e BACS project
for public benchmarking and will be released as open source software under the
New BSD licence.

Implementation Median cycle count
Reference Implementation (C)* 2,976,123
My implementation (ARM ghasm)? 1,900,274
Improvement 36%

@ Compiled with gcc -funroll-loops -fno-schedule-insns -03 -fomit-frame-pointer

Table 4.1: Benchmark results for PROST-APE
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Implementation Median cycle count
Reference Implementation (C)* 2,402,577
My implementation (ARM ghasm)? 1,648,407
Improvement 28%

@ Compiled with gcc -funroll-loops -fno-schedule-insns -03 -fomit-frame-pointer

Table 4.2: Benchmark results for PR@ST-COPA

Implementation Median cycle count
Reference Implementation (C)* 1,569,582
My implementation (ARM ¢hasm)P 848,100
Improvement 46%

& Compiled with gcc -funroll-loops -fno-schedule-insns -03 -fomit-frame-pointer
b Compiled with gcc -03 -fomit-frame-pointer

Table 4.3: Benchmark results for PR@ST-OTR

4.2 Comparison

SUPERCOP currently contains no other implementations of PR@ST-128 than
the reference C implementation. Rijneveld implemented a vectorised version
of PR@ST for ARMv7 with NEON [30]. A cursory comparison with his reported
cycle counts show that my implementation is significantly faster. However, he
reported problems with MixSlices which perhaps can be addressed with my
shorter variant.

ProsT-256 still remains untouched. Further work could try to optimise that
version as well. Most of my optimisations could also be backported to a more
efficient C implementation, as well.
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Appendix A

Appendix

A.1 Finding the shortest Straight-Line Program
with SAT4j

My implementation of Fuhs and Schneider-Kamp’s method of finding the shortest
linear straight-line program by transforming it to a boolean satisfiability prob-
lem [15] can be found via https://thomwiggers.nl/proest/.

I implemented the program in Java. The program takes as input a target
number of lines k£ and a matrix A that represents the original program. It will
try to prove that a straight-line program equivalent to A of length k exist.

As described in Section A.1, Fuhs and Schneider-Kamp define a number of
first-order-logic formulae that will only only be satisfiable by valid programs.

SAT4j only accepts input in Conjunctive Normal Form. It however has
a class, GateTranslator, that allows to transform simple statements such as
A, V,=,< and add them to a SAT4j Solver instance.

I created a hierarchy of classes that represent statements such as And, Or,
Xor. These classes know how to add themselves to a SAT4j Solver through
GateTranslator.

I then built the formulae given by Fuhs and Schneider-Kamp from these
classes. To not use too much RAM, I implemented them as classes similar to the
simpler statements and only construct the full statement with my representation
of propositional logic when adding them to the Solver. It is important to allow
this syntax tree to get garbage collected as soon as possible, because otherwise
it will eat hundreds of Gigabytes of RAM.

A.2 Approximating the shortest Straight-Line
Program

Boyar, Matthews and Peralta define in [12] a heuristic for finding an approx-
imation of the shortest linear program. I have already briefly described this
heuristic in Section 3.2.3. My implementation of this heuristic in Python 3 can
also be found via https://thomwiggers.nl/proest.

The input of the program should be provided by configuring the lists M and
S to the values of A and the initial value of S.
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The meat of the heuristic is selecting the next function to append to the
matrix of functions S. Determining the new distance of S to A with every new
candidate row is very expensive, because it needs to combine all rows in S with
each other until it has computed every row in A.

The distance function is implemented as a recursive algorithm. To improve
performance when calculating the distance to a row, I have implemented a cutoff:
if we have tried more steps than what we know is the current distance, the
distance function stops trying that branch and returns a high value. Additionally,
parallel programming was used to calculate the distances for multiple candidate
rows at the same time.
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A.3 Shorter MixSlices

Equation (A.1) is the implementation of MixSlices that was found using the
heuristic by Boyar et al. [12].

In the following equation, xg,--- ,x15 represent the inputs to MixSlices,
50,0,50,1, "+ ,53,3. The outputs s{ o, s, 1, -+ , 835 are represented by yo, -+, y15.
t1,--- ,t34 represent intermediate variables. The lines have been manually

sorted so that intermediates are defined as close to their first use as possible.
Nevertheless, it is easy to see that some variables, e.g. t14, have a very long life
span and are used both near the start and near the end.

t1 = o © zua Y11 = t5 D ta
ls3 =1 & zua los = o & ti3
ts = 29 & w5 lis = x5 & 5
Yyu = tz D ts Ys = tis D tos
tlig = xw © t3 tir = 3 @ o
ta = T2 D a3 tag = w12 D to6
ty = 12 @ z2 tis = x4 D z7
Y2 = ta D s Yo = tig D tos
tiy = mg D 14 tar = t2 @ ta
tip = 1 D 11 tie = ¢ D o
tig = x4 D tig Y6 = tic D tor
t1n, = w12 © w15 loag = 27 @ ti (A1)
1 = tig D ti1 Yo = tiz @ tog
tor = x3 @ ti2 lap = 23 @ U3
t1s = xg @D x11 t7 = zog @D w3
ys = tiz @ it s = 7 & t3
t¢ = x1 D w13 t31 = 213 © ti7
tao = x10 D tg ys = tic D Ia
Yyio = t1 B too t3a = x1 D tie
tg = Ty @ T4 Y15 = tis © t32
ta3 = x9 D to lss = x15 @ tus
ts = 27 & w13 ys = tis © t33
yr = tsg & to3 i34 = w11 @ ts
tog = t1p D ta23 Yyi2 = t7 D itz
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