Implementing Prøst on ARM11

Thom Wiggers thom@thomwiggers.nl https://thomwiggers.nl/proest/
Institute for Computing and Information Sciences Radboud University Nijmegen

10th April 2015

Outline

Introduction Why optimise Prøst

Prøst

Optimising on ARM

Optimising Prøst

Outline

Introduction Why optimise Prøst

Optimising on ARM

Optimising Prøst

What is..?

Authenticated Encryption

Authenticated Encryption is encryption in which you have both:

- confidentiality (nobody else can read this)
- authenticity (nobody else could have produced this message)

ARM11
 ARM11 is a CPU architecture used mostly in mobile and embedded devices.
 - Smartphones
 - Raspberry Pi
 - Nintendo 3DS

What is..?

Authenticated Encryption

Authenticated Encryption is encryption in which you have both:

- confidentiality (nobody else can read this)
- authenticity (nobody else could have produced this message)

ARM11

Arm11 is a CPU architecture used mostly in mobile and embedded devices.

- Smartphones
- Raspberry Pi
- Nintendo 3DS

Why optimise Prøst

- Caesar ${ }^{1}$ is an ongoing competition for Authenticated Encryption ciphers.
- "Winners" will be selected based not only on security, but also on performance in both hardware and software.
- More implementations means judges can better compare ciphers.
- Examples of other competitions:
- 2000, NIST announce Rijndael selected as the Advanced Encryption Standard (AES).
- 2012, NIST announce Keccak as winner of the NIST hash function competition (SHA3).

[^0]
Outline

Introduction Why optimise Prøst
Prøst
Optimising on ARM
Optimising Prøst

Prøst permutation

PrøSt combines the PrøSt permutation in various ways to arrive at different modes: COPA, OTR and APE.

The round function R_{i} where i indicates the round number, is defined as:
$R_{i}(x)=($ AddConstants $;$ ShiftPlanes $;$ MixSlices \circ SubRows $)(x)$.

Prøst state

PRøST-128 has a 256 bit state s which is considered as a $4 \times 4 \times 16$ three-dimensional block

$$
\mathrm{s}=\left(\begin{array}{llll}
s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\
s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\
s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\
s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3}
\end{array}\right)
$$

where each $s_{x, y}$ is a 16-bit lane.

Row

Column

Lane

Slice

Plane

Sheet

Axes

Nomenclature for state parts ${ }^{2}$

SubRows

For each row (a, b, c, d) of the state substitute $\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)$ where

$$
\begin{aligned}
a^{\prime} & =c \oplus(a \& b), \\
b^{\prime} & =d \oplus(b \& c), \\
c^{\prime} & =a \oplus\left(a^{\prime} \& b^{\prime}\right), \\
d^{\prime} & =b \oplus\left(b^{\prime} \& c^{\prime}\right) .
\end{aligned}
$$

Row

Column

Lane

Slice

Plane

Sheet

Axes

MixSlices

Mix up the slices according to this big thing:

$$
\begin{aligned}
s_{0,0}^{\prime} & =s_{0,0} \oplus s_{1,0} \oplus s_{1,3} \oplus s_{2,2} \oplus s_{3,0} \oplus s_{3,2} \oplus s_{3,3} \\
s_{0,1}^{\prime} & =s_{0,1} \oplus s_{1,0} \oplus s_{2,3} \oplus s_{3,0} \oplus s_{3,3} \\
s_{0,2}^{\prime} & =s_{0,2} \oplus s_{1,1} \oplus s_{2,0} \oplus s_{2,1} \oplus s_{3,0} \\
s_{0,3}^{\prime} & =s_{0,3} \oplus s_{1,2} \oplus s_{s_{2,1}} \oplus s_{2,2} \oplus s_{3,1} \\
s_{1,0}^{\prime} & =s_{0,0} \oplus s_{0,3} \oplus s_{1,0} \oplus s_{2,0} \oplus s_{2,2} \oplus s_{2,3} \oplus s_{3,2} \\
s_{1,1}^{\prime} & =s_{0,0} \oplus s_{1,1} \oplus s_{2,0} \oplus s_{2,3} \oplus s_{3,3} \\
s_{1,2}^{\prime} & =s_{0,1} \oplus s_{1,2} \oplus s_{2,0} \oplus s_{3,0} \oplus s_{3,1} \\
s_{1,3} & =s_{0,2} \oplus s_{1,3} \oplus s_{2,1} \oplus s_{3,1} \oplus s_{3,2} \\
s_{2,0}^{\prime} & =s_{0,2} \oplus s_{1,0} \oplus s_{1,2} \oplus s_{1,3} \oplus s_{2,0} \oplus s_{3,0} \oplus s_{3,3} \\
s_{2,1}^{\prime} & =s_{0,3} \oplus s_{1,0} \oplus s_{1,3} \oplus s_{2,1} \oplus s_{3,0} \\
s_{2,2}^{\prime} & =s_{0,0} \oplus s_{0,1} \oplus s_{1,0} \oplus s_{2,2} \oplus s_{3,1} \\
s_{2,3}^{\prime} & =s_{0,1} \oplus s_{0,2} \oplus s_{1,1} \oplus s_{2,3} \oplus s_{3,2} \\
s_{3,0}^{\prime} & =s_{0,0} \oplus s_{0,2} \oplus s_{0,3} \oplus s_{1,2} \oplus s_{2,0} \oplus s_{2,3} \oplus s_{3,0} \\
s_{3,1}^{\prime} & =s_{0,0} \oplus s_{0,3} \oplus s_{1,3} \oplus s_{2,0} \oplus s_{3,1} \\
s_{3,2}^{\prime} & =s_{0,0} \oplus s_{1,0} \oplus s_{1,1} \oplus s_{2,1} \oplus s_{3,2} \\
s_{3,3}^{\prime} & =s_{0,1} \oplus s_{1,1} \oplus s_{1,2} \oplus s_{2,2} \oplus s_{3,3}
\end{aligned}
$$

ShiftPlanes ${ }_{i}$

- Shifts the bits in the planes over the z-direction,
- The number of bits rotated differs for odd and even rounds:

Even The first, second, third and forth plane are rotated $0,1,8$ and 9 bits, respectively,
Odd The first, second, third and forth plane are rotated $0,2,4$ and 6 bits, respectively.

Row

Column

Lane

Slice

Plane

Sheet

Axes

AddConstants ${ }_{i}$

Adds the constants c_{1} and c_{2}, rotated by the round number i and the index of the lane, to the individual lanes.

$$
\left(\begin{array}{c}
s_{0,0}^{\prime} \\
s_{0,1}^{\prime} \\
s_{0,2}^{\prime} \\
s_{0,3}^{\prime} \\
s_{1,0}^{\prime} \\
\vdots \\
s_{3,3}^{\prime}
\end{array}\right)=\left(\begin{array}{c}
s_{0,0} \oplus\left(c_{1} \lll i \lll 0\right) \\
s_{0,1} \oplus\left(c_{2} \lll i \lll 1\right) \\
s_{0,2} \oplus\left(c_{1} \lll i \ll 2\right) \\
s_{0,3} \oplus\left(c_{2} \lll i \ll 3\right) \\
s_{1,0} \oplus\left(c_{1} \lll i \ll 4\right) \\
\vdots \\
s_{3,3} \oplus\left(c_{2} \lll i \lll 15\right)
\end{array}\right)
$$

Outline

Introduction Why optimise Prøst

Optimising on ARM

Optimising Prøst

ARM11

- 32-bit architecture
- 14 registers + stack pointer + program counter

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly differently.

$$
\begin{array}{ll}
\mathrm{x} 1=\text { mem16[address_a] } & \mathrm{x} 1=\text { mem16[address_a] } \\
\mathrm{x}=\mathrm{x} 1+10 & \mathrm{x} 2=\text { mem16[address_b] } \\
\mathrm{x} 2=\text { mem16[address_b] } & \mathrm{x} 3=\text { mem16[address_c] } \\
\mathrm{y}=\mathrm{x} 2+10 & \mathrm{x}=\mathrm{x} 1+10 \\
\mathrm{x} 3=\text { mem16[address_c] } & \mathrm{y}=\mathrm{x} 2+10 \\
\mathrm{z}=\mathrm{x} 3+10 & \mathrm{z}=\mathrm{x} 3+10
\end{array}
$$

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly differently.
Cycle: 1

$$
\begin{array}{ll}
\mathrm{x} 1=\mathrm{mem} 16[\text { address_a] } & \mathrm{x} 1=\text { mem16[address_a] } \\
\mathrm{x}=\mathrm{x} 1+10 & \mathrm{x} 2=\text { mem16[address_b] } \\
\mathrm{x} 2=\text { mem16[address_b] } & \mathrm{x} 3=\text { mem16[address_c] } \\
\mathrm{y}=\mathrm{x} 2+10 & \mathrm{x}=\mathrm{x} 1+10 \\
\mathrm{x} 3=\operatorname{mem} 16[\text { address_c] } & \mathrm{y}=\mathrm{x} 2+10 \\
\mathrm{z}=\mathrm{x} 3+10 & \mathrm{z}=\mathrm{x} 3+10
\end{array}
$$

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly differently.
Cycle: 2

$$
\begin{array}{ll}
\mathrm{x} 1=\text { mem16[address_a] } & \mathrm{x} 1=\text { mem16[address_a] } \\
\mathrm{x}=\mathrm{x} 1+10 \text { \# waiting. } . . & \mathrm{x} 2=\text { mem16[address_b] } \\
\mathrm{x} 2=\text { mem16[address_b] } & \mathrm{x} 3=\text { mem16[address_c] } \\
\mathrm{y}=\mathrm{x} 2+10 & \mathrm{x}=\mathrm{x} 1+10 \\
\mathrm{x} 3=\operatorname{mem} 16[\text { address_c] } & \mathrm{y}=\mathrm{x} 2+10 \\
\mathrm{z}=\mathrm{x} 3+10 & \mathrm{z}=\mathrm{x} 3+10
\end{array}
$$

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly differently.
Cycle: 3

$$
\begin{array}{ll}
\mathrm{x} 1=\text { mem16 [address_a] } & \mathrm{x} 1=\text { mem16 [address_a] } \\
\mathrm{x}=\mathrm{x} 1+10 \text { \# waiting } . . . & \mathrm{x} 2=\text { mem16[address_b] } \\
\mathrm{x} 2=\text { mem16[address_b] } & \mathrm{x} 3=\text { mem16 [address_c] } \\
\mathrm{y}=\mathrm{x} 2+10 & \mathrm{x}=\mathrm{x} 1+10 \\
\mathrm{x} 3=\text { mem16 [address_c] } & \mathrm{y}=\mathrm{x} 2+10 \\
\mathrm{z}=\mathrm{x} 3+10 & \mathrm{z}=\mathrm{x} 3+10
\end{array}
$$

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly differently.
Cycle: 4

$$
\begin{array}{ll}
\mathrm{x} 1=\text { mem16[address_a] } & \mathrm{x} 1=\text { mem16 [address_a] } \\
\mathrm{x}=\mathrm{x} 1+10 & \mathrm{x} 2=\text { mem16[address_b] } \\
\mathrm{x} 2=\text { mem16 [address_b] } & \mathrm{x} 3=\text { mem16 [address_c] } \\
\mathrm{y}=\mathrm{x} 2+10 & \mathrm{x}=\mathrm{x} 1+10 \\
\mathrm{x} 3=\text { mem16[address_c] } & \mathrm{y}=\mathrm{x} 2+10 \\
\mathrm{z}=\mathrm{x} 3+10 & \mathrm{z}=\mathrm{x} 3+10
\end{array}
$$

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly differently.
Cycle: 5

$$
\begin{array}{ll}
\mathrm{x} 1=\text { mem } 16[\text { address_a] } & \mathrm{x} 1=\text { mem } 16 \text { [address_a] } \\
\mathrm{x}=\mathrm{x} 1+10 & \mathrm{x} 2=\text { mem16 [address_b] } \\
\mathrm{x} 2=\text { mem16[address_b] } & \mathrm{x} 3=\text { mem16 [address_c] } \\
\mathrm{y}=\mathrm{x} 2+10 & \mathrm{x}=\mathrm{x} 1+10 \\
\mathrm{x} 3=\text { mem16[address_c] } & \mathrm{y}=\mathrm{x} 2+10 \\
\mathrm{z}=\mathrm{x} 3+10 & \mathrm{z}=\mathrm{x} 3+10
\end{array}
$$

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly differently.
Cycle: 6

$$
\begin{array}{ll}
\mathrm{x} 1=\text { mem16[address_a] } & \mathrm{x} 1=\text { mem16 [address_a] } \\
\mathrm{x}=\mathrm{x} 1+10 & \mathrm{x} 2=\text { mem16 [address_b] } \\
\mathrm{x} 2=\text { mem16[address_b] } & \mathrm{x} 3=\text { mem16 [address_c] } \\
\mathrm{y}=\mathrm{x} 2+10 \text { \# waiting. } . . & \mathrm{x}=\mathrm{x} 1+10 \\
\mathrm{x} 3=\text { mem16 [address_c] } & \mathrm{y}=\mathrm{x} 2+10 \\
\mathrm{z}=\mathrm{x} 3+10 & \mathrm{z}=\mathrm{x} 3+10
\end{array}
$$

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly differently.
Cycle: 7

$$
\begin{array}{ll}
\mathrm{x} 1=\text { mem16[address_a] } & \mathrm{x} 1=\text { mem16[address_a] } \\
\mathrm{x}=\mathrm{x} 1+10 & \mathrm{x} 2=\text { mem16[address_b] } \\
\mathrm{x} 2=\text { mem16[address_b] } & \mathrm{x} 3=\text { mem16[address_c] } \\
\mathrm{y}=\mathrm{x} 2+10 \text { \# waiting. } . . & \mathrm{x}=\mathrm{x} 1+10 \\
\mathrm{x} 3=\operatorname{mem} 16[\text { address_c] } & \mathrm{y}=\mathrm{x} 2+10 \\
\mathrm{z}=\mathrm{x} 3+10 & \mathrm{z}=\mathrm{x} 3+10
\end{array}
$$

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly differently.
Cycle: 8

$$
\begin{array}{ll}
\mathrm{x} 1=\text { mem16[address_a] } & \mathrm{x} 1=\text { mem16[address_a] } \\
\mathrm{x}=\mathrm{x} 1+10 & \mathrm{x} 2=\text { mem16[address_b] } \\
\mathrm{x} 2=\text { mem16[address_b] } & \mathrm{x} 3=\text { mem16[address_c] } \\
\mathrm{y}=\mathrm{x} 2+10 & \mathrm{x}=\mathrm{x} 1+10 \\
\mathrm{x} 3=\operatorname{mem} 16[\text { address_c] } & \mathrm{y}=\mathrm{x} 2+10 \\
\mathrm{z}=\mathrm{x} 3+10 & \mathrm{z}=\mathrm{x} 3+10
\end{array}
$$

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly differently.
Cycle: 9

$$
\begin{array}{ll}
\mathrm{x} 1=\text { mem16[address_a] } & \mathrm{x} 1=\text { mem16[address_a] } \\
\mathrm{x}=\mathrm{x} 1+10 & \mathrm{x} 2=\text { mem16[address_b] } \\
\mathrm{x} 2=\text { mem16[address_b] } & \mathrm{x} 3=\text { mem16[address_c] } \\
\mathrm{y}=\mathrm{x} 2+10 & \mathrm{x}=\mathrm{x} 1+10 \\
\mathrm{x} 3=\operatorname{mem} 16[\text { address_c] } & \mathrm{y}=\mathrm{x} 2+10 \\
\mathrm{z}=\mathrm{x} 3+10 & \mathrm{z}=\mathrm{x} 3+10
\end{array}
$$

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly differently.
Cycle: 10

$$
\begin{array}{ll}
\mathrm{x} 1=\text { mem16[address_a] } & \mathrm{x} 1=\text { mem16 [address_a] } \\
\mathrm{x}=\mathrm{x} 1+10 & \mathrm{x} 2=\text { mem16[address_b] } \\
\mathrm{x} 2=\text { mem16[address_b] } & \mathrm{x} 3=\text { mem16[address_c] } \\
\mathrm{y}=\mathrm{x} 2+10 & \mathrm{x}=\mathrm{x} 1+10 \\
\mathrm{x} 3=\text { mem16[address_c] } & \mathrm{y}=\mathrm{x} 2+10 \\
\mathrm{z}=\mathrm{x} 3+10 \text { \# waiting.. } & \mathrm{z}=\mathrm{x} 3+10
\end{array}
$$

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly differently.
Cycle: 11

$$
\begin{array}{ll}
\mathrm{x} 1=\text { mem16[address_a] } & \mathrm{x} 1=\text { mem16[address_a] } \\
\mathrm{x}=\mathrm{x} 1+10 & \mathrm{x} 2=\text { mem16[address_b] } \\
\mathrm{x} 2=\text { mem16[address_b] } & \mathrm{x} 3=\text { mem16[address_c] } \\
\mathrm{y}=\mathrm{x} 2+10 & \mathrm{x}=\mathrm{x} 1+10 \\
\mathrm{x} 3=\text { mem16[address_c] } & \mathrm{y}=\mathrm{x} 2+10 \\
\mathrm{z}=\mathrm{x} 3+10 \text { \# waiting. } . . & \mathrm{z}=\mathrm{x} 3+10
\end{array}
$$

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly differently.
Cycle: 12

$$
\begin{array}{ll}
\mathrm{x} 1=\text { mem16[address_a] } & \mathrm{x} 1=\text { mem16[address_a] } \\
\mathrm{x}=\mathrm{x} 1+10 & \mathrm{x} 2=\text { mem16[address_b] } \\
\mathrm{x} 2=\text { mem16[address_b] } & \mathrm{x} 3=\text { mem16[address_c] } \\
\mathrm{y}=\mathrm{x} 2+10 & \mathrm{x}=\mathrm{x} 1+10 \\
\mathrm{x} 3=\operatorname{mem} 16[\text { address_c] } & \mathrm{y}=\mathrm{x} 2+10 \\
\mathrm{z}=\mathrm{x} 3+10 & \mathrm{z}=\mathrm{x} 3+10
\end{array}
$$

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly differently.

$$
\begin{array}{ll}
\mathrm{x} 1=\text { mem16[address_a] } & \mathrm{x} 1=\text { mem16[address_a] } \\
\mathrm{x}=\mathrm{x} 1+10 & \mathrm{x} 2=\text { mem16[address_b] } \\
\mathrm{x} 2=\text { mem16[address_b] } & \mathrm{x} 3=\text { mem16[address_c] } \\
\mathrm{y}=\mathrm{x} 2+10 & \mathrm{x}=\mathrm{x} 1+10 \\
\mathrm{x} 3=\text { mem16[address_c] } & \mathrm{y}=\mathrm{x} 2+10 \\
\mathrm{z}=\mathrm{x} 3+10 & \mathrm{z}=\mathrm{x} 3+10 \\
\# \text { done after } 12 \text { cycles } & \# \text { done after } 6 \text { cycles! }
\end{array}
$$

Free shifts and rotations

Arm support rotating and shifting one of the inputs to most arithmetic operations.

$$
a \leftarrow b \odot(c \ggg n)
$$

Outline

Introduction Why optimise Prøst

Optimising on ARM

Optimising Prøst

SubRows

For each row (a, b, c, d) of the state substitute $\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)$ where

$$
\begin{aligned}
a^{\prime} & =c \oplus(a \& b), \\
b^{\prime} & =d \oplus(b \& c), \\
c^{\prime} & =a \oplus\left(a^{\prime} \& b^{\prime}\right), \\
d^{\prime} & =b \oplus\left(b^{\prime} \& c^{\prime}\right) .
\end{aligned}
$$

Row

Column

Lane

Slice

Plane

Sheet

Axes

SubRows

Lanes are 16 bits, but our registers are 32 bits...
We can load two lanes into one register in one load instruction.

```
a_and_b = mem32[address_of_s]
# b is in the upper part of a_and_b
c_and_d = mem32[address_of_s + 4]
# a' = c ^ (a & b)
newa = a_and_b & (a_and_b >>> 16)
newa ^= c_and_d
mem16[address_of_s] = newa
```


SubRows

Lanes are 16 bits, but our registers are 32 bits...
We can load two lanes into one register in one load instruction.

```
a_and_b = mem32[address_of_s]
# b is in the upper part of a_and_b
c_and_d = mem32[address_of_s + 4]
# a' = c ^ (a & b)
newa = a_and_b & (a_and_b >>> 16)
newa ^= c_and_d
mem16[address_of_s] = newa
```


SubRows

Lanes are 16 bits, but our registers are 32 bits...
We can load two lanes into one register in one load instruction.

```
a_and_b = mem32[address_of_s]
# b is in the upper part of a_and_b
c_and_d = mem32[address_of_s + 4]
# a' = c ^ (a & b)
newa = a_and_b & (a_and_b >>> 16)
newa ^= c_and_d
mem16[address_of_s] = newa
```


SubRows

Lanes are 16 bits, but our registers are 32 bits...
We can load two lanes into one register in one load instruction.

```
a_and_b = mem32[address_of_s]
# b is in the upper part of a_and_b
c_and_d = mem32[address_of_s + 4]
# a' = c ^ (a & b)
newa = a_and_b & (a_and_b >>> 16)
newa ^= c_and_d
mem16[address_of_s] = newa
```


SubRows

Lanes are 16 bits, but our registers are 32 bits...
We can load two lanes into one register in one load instruction.

```
a_and_b = mem32[address_of_s]
# b is in the upper part of a_and_b
c_and_d = mem32[address_of_s + 4]
# a' = c ^ (a & b)
newa = a_and_b & (a_and_b >>> 16)
newa ^= c_and_d
mem16[address_of_s] = newa
```


MixSlices

Mix up the slices according to this big thing:

$$
\begin{aligned}
s_{0,0}^{\prime} & =s_{0,0} \oplus s_{1,0} \oplus s_{1,3} \oplus s_{2,2} \oplus s_{3,0} \oplus s_{3,2} \oplus s_{3,3} \\
s_{0,1}^{\prime} & =s_{0,1} \oplus s_{1,0} \oplus s_{2,3} \oplus s_{3,0} \oplus s_{3,3} \\
s_{0,2}^{\prime} & =s_{0,2} \oplus s_{1,1} \oplus s_{2,0} \oplus s_{2,1} \oplus s_{3,0} \\
s_{0,3}^{\prime} & =s_{0,3} \oplus s_{1,2} \oplus s_{2,1} \oplus s_{2,2} \oplus s_{3,1} \\
s_{1,0}^{\prime} & =s_{0,0} \oplus s_{0,3} \oplus s_{1,0} \oplus s_{2,0} \oplus s_{2,2} \oplus s_{2,3} \oplus s_{3,2} \\
s_{1,1}^{\prime} & =s_{0,0} \oplus s_{1,1} \oplus s_{2,0} \oplus s_{2,3} \oplus s_{3,3} \\
s_{1,2}^{\prime} & =s_{0,1} \oplus s_{1,2} \oplus s_{2,0} \oplus s_{3,0} \oplus s_{3,1} \\
s_{1,3}^{\prime} & =s_{0,2} \oplus s_{1,3} \oplus s_{2,1} \oplus s_{3,1} \oplus s_{3,2} \\
s_{2,0}^{\prime} & =s_{0,2} \oplus s_{1,0} \oplus s_{1,2} \oplus s_{1,3} \oplus s_{2,0} \oplus s_{3,0} \oplus s_{3,3} \\
s_{2,1}^{\prime} & =s_{0,3} \oplus s_{1,0} \oplus s_{1,3} \oplus s_{2,1} \oplus s_{3,0} \\
s_{2,2}^{\prime} & =s_{0,0} \oplus s_{0,1} \oplus s_{1,0} \oplus s_{2,2} \oplus s_{3,1} \\
s_{2,3}^{\prime} & =s_{0,1} \oplus s_{0,2} \oplus s_{1,1} \oplus s_{2,3} \oplus s_{3,2} \\
s_{3,0}^{\prime} & =s_{0,0} \oplus s_{0,2} \oplus s_{0,3} \oplus s_{1,2} \oplus s_{2,0} \oplus s_{2,3} \oplus s_{3,0} \\
s_{3,1}^{\prime} & =s_{0,0} \oplus s_{0,3} \oplus s_{1,3} \oplus s_{2,0} \oplus s_{3,1} \\
s_{3,2}^{\prime} & =s_{0,0} \oplus s_{1,0} \oplus s_{1,1} \oplus s_{2,1} \oplus s_{3,2} \\
s_{3,3}^{\prime} & =s_{0,1} \oplus s_{1,1} \oplus s_{1,2} \oplus s_{2,2} \oplus s_{3,3}
\end{aligned}
$$

MixSlices

Mix up the slices according to this big thing:

$$
\begin{aligned}
s_{0,0}^{\prime} & =s_{0,0} \oplus s_{1,0} \oplus s_{1,3} \oplus s_{2,2} \oplus s_{3,0} \oplus s_{3,2} \oplus s_{3,3} \\
s_{0,1}^{\prime} & =s_{0,1} \oplus s_{1,0} \oplus s_{2,3} \oplus s_{3,0} \oplus s_{3,3} \\
s_{0,2}^{\prime} & =s_{0,2} \oplus s_{1,1} \oplus s_{2,0} \oplus s_{2,1} \oplus s_{3,0} \\
s_{0,3}^{\prime} & =s_{0,3} \oplus s_{1,2} \oplus s_{s_{2,1}} \oplus s_{2,2} \oplus s_{3,1} \\
s_{1,0}^{\prime} & =s_{0,0} \oplus s_{0,3} \oplus s_{1,0} \oplus s_{2,0} \oplus s_{2,2} \oplus s_{2,3} \oplus s_{3,2} \\
s_{1,1}^{\prime} & =s_{0,0} \oplus s_{1,1} \oplus s_{2,0} \oplus s_{2,3} \oplus s_{3,3} \\
s_{1,2}^{\prime} & =s_{0,1} \oplus s_{1,2} \oplus s_{2,0} \oplus s_{3,0} \oplus s_{3,1} \\
s_{1,3} & =s_{0,2} \oplus s_{1,3} \oplus s_{2,1} \oplus s_{3,1} \oplus s_{3,2} \\
s_{2,0}^{\prime} & =s_{0,2} \oplus s_{1,0} \oplus s_{1,2} \oplus s_{1,3} \oplus s_{2,0} \oplus s_{3,0} \oplus s_{3,3} \\
s_{2,1}^{\prime} & =s_{0,3} \oplus s_{1,0} \oplus s_{1,3} \oplus s_{2,1} \oplus s_{3,0} \\
s_{2,2}^{\prime} & =s_{0,0} \oplus s_{0,1} \oplus s_{1,0} \oplus s_{2,2} \oplus s_{3,1} \\
s_{2,3}^{\prime} & =s_{0,1} \oplus s_{0,2} \oplus s_{1,1} \oplus s_{2,3} \oplus s_{3,2} \\
s_{3,0}^{\prime} & =s_{0,0} \oplus s_{0,2} \oplus s_{0,3} \oplus s_{1,2} \oplus s_{2,0} \oplus s_{2,3} \oplus s_{3,0} \\
s_{3,1}^{\prime} & =s_{0,0} \oplus s_{0,3} \oplus s_{1,3} \oplus s_{2,0} \oplus s_{3,1} \\
s_{3,2}^{\prime} & =s_{0,0} \oplus s_{1,0} \oplus s_{1,1} \oplus s_{2,1} \oplus s_{3,2} \\
s_{3,3}^{\prime} & =s_{0,1} \oplus s_{1,1} \oplus s_{1,2} \oplus s_{2,2} \oplus s_{3,3}
\end{aligned}
$$

MixSlices

Mix up the slices according to this big thing:

$$
\begin{aligned}
s_{0,0}^{\prime} & =s_{0,0} \oplus s_{1,0} \oplus s_{1,3} \oplus s_{2,2} \oplus s_{3,0} \oplus s_{3,2} \oplus s_{3,3} \\
s_{0,1}^{\prime} & =s_{0,1} \oplus s_{1,0} \oplus s_{2,3} \oplus s_{3,0} \oplus s_{3,3} \\
s_{0,2}^{\prime} & =s_{0,2} \oplus s_{1,1} \oplus s_{2,0} \oplus s_{2,1} \oplus s_{3,0} \\
s_{0,3}^{\prime} & =s_{0,3} \oplus s_{1,2} \oplus s_{2,1} \oplus s_{2,2} \oplus s_{3,1} \\
s_{1,0}^{\prime} & =s_{0,0} \oplus s_{0,3} \oplus s_{1,0} \oplus s_{2,0} \oplus s_{2,2} \oplus s_{2,3} \oplus s_{3,2} \\
s_{1,1}^{\prime} & =s_{0,0} \oplus s_{1,1} \oplus s_{2,0} \oplus s_{2,3} \oplus s_{3,3} \\
s_{1,2}^{\prime} & =s_{0,1} \oplus s_{1,2} \oplus s_{2,0} \oplus s_{3,0} \oplus s_{3,1} \\
s_{1,3}^{\prime} & =s_{0,2} \oplus s_{1,3} \oplus s_{2,1} \oplus s_{3,1} \oplus s_{3,2} \\
s_{2,0}^{\prime} & =s_{0,2} \oplus s_{1,0} \oplus s_{1,2} \oplus s_{1,3} \oplus s_{2,0} \oplus s_{3,0} \oplus s_{3,3} \\
s_{2,1}^{\prime} & =s_{0,3} \oplus s_{1,0} \oplus s_{1,3} \oplus s_{2,1} \oplus s_{3,0} \\
s_{2,2}^{\prime} & =s_{0,0} \oplus s_{0,1} \oplus s_{1,0} \oplus s_{2,2} \oplus s_{3,1} \\
s_{2,3}^{\prime} & =s_{0,1} \oplus s_{0,2} \oplus s_{1,1} \oplus s_{2,3} \oplus s_{3,2} \\
s_{3,0}^{\prime} & =s_{0,0} \oplus s_{0,2} \oplus s_{0,3} \oplus s_{1,2} \oplus s_{2,0} \oplus s_{2,3} \oplus s_{3,0} \\
s_{3,1}^{\prime} & =s_{0,0} \oplus s_{0,3} \oplus s_{1,3} \oplus s_{2,0} \oplus s_{3,1} \\
s_{3,2}^{\prime} & =s_{0,0} \oplus s_{1,0} \oplus s_{1,1} \oplus s_{2,1} \oplus s_{3,2} \\
s_{3,3}^{\prime} & =s_{0,1} \oplus s_{1,1} \oplus s_{1,2} \oplus s_{2,2} \oplus s_{3,3}
\end{aligned}
$$

MixSlices

Mix up the slices according to this big thing:

$$
\begin{aligned}
s_{0,0}^{\prime} & =s_{0,0} \oplus s_{1,0} \oplus s_{1,3} \oplus s_{2,2} \oplus s_{3,0} \oplus s_{3,2} \oplus s_{3,3} \\
s_{0,1}^{\prime} & =s_{0,1} \oplus s_{1,0} \oplus s_{2,3} \oplus s_{3,0} \oplus s_{3,3} \\
s_{0,2}^{\prime} & =s_{0,2} \oplus s_{1,1} \oplus s_{2,0} \oplus s_{2,1} \oplus s_{3,0} \\
s_{0,3}^{\prime} & =s_{0,3} \oplus s_{1,2} \oplus s_{s_{2,1}} \oplus s_{2,2} \oplus s_{3,1} \\
s_{1,0}^{\prime} & =s_{0,0} \oplus s_{0,3} \oplus s_{1,0} \oplus s_{2,0} \oplus s_{2,2} \oplus s_{2,3} \oplus s_{3,2} \\
s_{1,1}^{\prime} & =s_{0,0} \oplus s_{1,1} \oplus s_{2,0} \oplus s_{2,3} \oplus s_{3,3} \\
s_{1,2}^{\prime} & =s_{0,1} \oplus s_{1,2} \oplus s_{2,0} \oplus s_{3,0} \oplus s_{3,1} \\
s_{1,3} & =s_{0,2} \oplus s_{1,3} \oplus s_{2,1} \oplus s_{3,1} \oplus s_{3,2} \\
s_{2,0}^{\prime} & =s_{0,2} \oplus s_{1,0} \oplus s_{1,2} \oplus s_{1,3} \oplus s_{2,0} \oplus s_{3,0} \oplus s_{3,3} \\
s_{2,1}^{\prime} & =s_{0,3} \oplus s_{1,0} \oplus s_{1,3} \oplus s_{2,1} \oplus s_{3,0} \\
s_{2,2}^{\prime} & =s_{0,0} \oplus s_{0,1} \oplus s_{1,0} \oplus s_{2,2} \oplus s_{3,1} \\
s_{2,3}^{\prime} & =s_{0,1} \oplus s_{0,2} \oplus s_{1,1} \oplus s_{2,3} \oplus s_{3,2} \\
s_{3,0}^{\prime} & =s_{0,0} \oplus s_{0,2} \oplus s_{0,3} \oplus s_{1,2} \oplus s_{2,0} \oplus s_{2,3} \oplus s_{3,0} \\
s_{3,1}^{\prime} & =s_{0,0} \oplus s_{0,3} \oplus s_{1,3} \oplus s_{2,0} \oplus s_{3,1} \\
s_{3,2}^{\prime} & =s_{0,0} \oplus s_{1,0} \oplus s_{1,1} \oplus s_{2,1} \oplus s_{3,2} \\
s_{3,3}^{\prime} & =s_{0,1} \oplus s_{1,1} \oplus s_{1,2} \oplus s_{2,2} \oplus s_{3,3}
\end{aligned}
$$

MixSlices

Mix up the slices according to this big thing:

$$
\begin{aligned}
s_{0,0}^{\prime} & =s_{0,0} \oplus s_{1,0} \oplus s_{1,3} \oplus s_{2,2} \oplus s_{3,0} \oplus s_{3,2} \oplus s_{3,3} \\
s_{0,1}^{\prime} & =s_{0,1} \oplus s_{1,0} \oplus s_{2,3} \oplus s_{3,0} \oplus s_{3,3} \\
s_{0,2}^{\prime} & =s_{0,2} \oplus s_{1,1} \oplus s_{2,0} \oplus s_{2,1} \oplus s_{3,0} \\
s_{0,3}^{\prime} & =s_{0,3} \oplus s_{1,2} \oplus s_{2,1} \oplus s_{2,2} \oplus s_{3,1} \\
s_{1,0}^{\prime} & =s_{0,0} \oplus s_{0,3} \oplus s_{1,0} \oplus s_{2,0} \oplus s_{2,2} \oplus s_{2,3} \oplus s_{3,2} \\
s_{1,1}^{\prime} & =s_{0,0} \oplus s_{1,1} \oplus s_{2,0} \oplus s_{2,3} \oplus s_{3,3} \\
s_{1,2}^{\prime} & =s_{0,1} \oplus s_{1,2} \oplus s_{2,0} \oplus s_{3,0} \oplus s_{3,1} \\
s_{1,3} & =s_{0,2} \oplus s_{1,3} \oplus s_{2,1} \oplus s_{3,1} \oplus s_{3,2} \\
s_{2,0}^{\prime} & =s_{0,2} \oplus s_{1,0} \oplus s_{1,2} \oplus s_{1,3} \oplus s_{2,0} \oplus s_{3,0} \oplus s_{3,3} \\
s_{2,1}^{\prime} & =s_{0,3} \oplus s_{1,0} \oplus s_{1,3} \oplus s_{2,1} \oplus s_{3,0} \\
s_{2,2}^{\prime} & =s_{0,0} \oplus s_{0,1} \oplus s_{1,0} \oplus s_{2,2} \oplus s_{3,1} \\
s_{2,3}^{\prime} & =s_{0,1} \oplus s_{0,2} \oplus s_{1,1} \oplus s_{2,3} \oplus s_{3,2} \\
s_{3,0}^{\prime} & =s_{0,0} \oplus s_{0,2} \oplus s_{0,3} \oplus s_{1,2} \oplus s_{2,0} \oplus s_{2,3} \oplus s_{3,0} \\
s_{3,1}^{\prime} & =s_{0,0} \oplus s_{0,3} \oplus s_{1,3} \oplus s_{2,0} \oplus s_{3,1} \\
s_{3,2}^{\prime} & =s_{0,0} \oplus s_{1,0} \oplus s_{1,1} \oplus s_{2,1} \oplus s_{3,2} \\
s_{3,3}^{\prime} & =s_{0,1} \oplus s_{1,1} \oplus s_{1,2} \oplus s_{2,2} \oplus s_{3,3}
\end{aligned}
$$

Finding the shortest MixSlices

- We want to find a program that can do MixSlices in as few lines of the shape $u=v \oplus w$ as possible. (this is known as the shortest linear Straight-Line Program);
- Finding this SLP is NP-hard
- Tried to find the shortest program, but that wasn't feasible even on the biggest machine on campus.

Heuristic results

A new MixSlices in 48 instead of 72 xORs!

t_{1}	$=$	x_{0}	\oplus	x_{14}	t_{6}	$=$	x_{1}	\oplus	x_{13}	t_{27}	$=$	t_{2}	\oplus
t_{22}													
t_{3}	$=$	t_{1}	\oplus	x_{14}	t_{22}	$=$	x_{10}	\oplus	t_{6}	t_{16}	$=$	x_{6}	\oplus

Heuristic results

A new MixSlices in 48 instead of 72 xORs!

t_{1}	$=$	x_{0}	\oplus	x_{14}	t_{6}	$=$	x_{1}	\oplus	x_{13}	t_{27}	$=$	t_{2}	\oplus
t_{22}													
t_{3}	$=$	t_{1}	\oplus	x_{14}	t_{22}	$=$	x_{10}	\oplus	t_{6}	t_{16}	$=$	x_{6}	\oplus

ShiftPlanes ${ }_{i}$

- Shifts the bits in the planes over the z-direction,
- The number of bits rotated differs for odd and even rounds:

Even The first, second, third and forth plane are rotated $0,1,8$ and 9 bits, respectively,
Odd The first, second, third and forth plane are rotated $0,2,4$ and 6 bits, respectively.

ShiftPlanes

To rotate a 16 bit lane inside a 32-bit register, we need to first double the register:
$\mathrm{a}=$ mem16[addr]
$a=a \mid(a \ll 16)$
a >>>= 2
Unfortunately, that means we can't use our inline rotations any more.

AddConstants ${ }_{i}$

Adds the constants c_{1} and c_{2}, rotated by the round number i and the index of the lane, to the individual lanes.

$$
\left(\begin{array}{c}
s_{0,0}^{\prime} \\
s_{0,1}^{\prime} \\
s_{0,2}^{\prime} \\
s_{0,3}^{\prime} \\
s_{1,0}^{\prime} \\
\vdots \\
s_{3,3}^{\prime}
\end{array}\right)=\left(\begin{array}{c}
s_{0,0} \oplus\left(c_{1} \lll i \lll 0\right) \\
s_{0,1} \oplus\left(c_{2} \lll i \lll 1\right) \\
s_{0,2} \oplus\left(c_{1} \lll i \lll 2\right) \\
s_{0,3} \oplus\left(c_{2} \lll i \lll 3\right) \\
s_{1,0} \oplus\left(c_{1} \lll i \ll 4\right) \\
\vdots \\
s_{3,3} \oplus\left(c_{2} \lll i \lll 15\right)
\end{array}\right)
$$

AddConstants

Here, we can make good use of the free rotations:
x_0 = mem16[address]
newx0 = x_0 ~ (c1 >>> 31)

By reusing results still in memory from ShiftPlanes we don't need to shift registers loaded using the "two lanes in one register" -approach.

Benchmarks

Putting it all together, we get the following results from the SUPERCOP benchmarking suite for cryptography:

Implementation	APE	COPA	OTR
Reference (C)	$2,975,123$	$2,402,577$	$1,569,582$
Mine (ARM asm)	$1,900,274$	$1,714,321$	848,100
Performance improvement	36%	28%	46%

Table: Comparison of cycle counts

Conclusions

Results

- Good performance improvement,
- New implementation of MixSlices.

Possible further work

- Optimise Prøst-256,
- Optimise Prøst for other platforms,
- Optimise other ciphers using these techniques,
- Backport these techniques to a faster c-implementation.

Outline

Overtime
Approximating the shortest MixSlices Searching the shortest MixSlices

Using a heuristic

Boyar et al. define a heuristic to approximate the shortest program.[1]

The heuristic

(1) Consider your program as an input matrix M;
(2) Initialise matrix S to $([1,0, \cdots],[0,1,0 \cdots])$ to represent your inputs;
(3) Define a Distance function Dist $[i]$ that determines the distance of S to $M[i]$ as minimum number of combinations of S that need to be made to get $M[i]$;
(4) Generate all combinations of rows in S, determine the best new one by the norm of the distances until distances are 0 .

Using a heuristic

Boyar et al. define a heuristic to approximate the shortest program.[1]

The heuristic

(1) Consider your program as an input matrix M;
(2) Initialise matrix S to $([1,0, \cdots],[0,1,0 \cdots])$ to represent your inputs;
(3) Define a Distance function Dist[i] that determines the distance of S to $M[i]$ as minimum number of combinations of S that need to be made to get $M[i]$;
(4) Generate all combinations of rows in S, determine the best new one by the norm of the distances until distances are 0 .

Your program as a matrix

We can represent these programs as a matrix:

$y_{0}=x_{0}$	$\oplus x_{1}$	$\oplus x_{2}$	$\oplus x_{3}$	$\oplus x_{4}$
$y_{1}=x_{0}$	$\oplus x_{1}$	$\oplus x_{2}$	$\oplus x_{3}$	
$y_{2}=x_{0}$	$\oplus x_{1}$	$\oplus x_{2}$		$\oplus x_{4}$
$y_{3}=$		x_{2}	$\oplus x_{3}$	$\oplus x_{4}$
$y_{4}=x_{0}$				$\oplus x_{4}$

1 \& 1 \& 1 \& 1 \& 0

1 \& 1 \& 1 \& 0 \& 1

0 \& 0 \& 1 \& 1 \& 1

1 \& 0 \& 0 \& 0 \& 1\end{array}\right)\)

Using a heuristic

Boyar et al. define a heuristic to approximate the shortest program.[1]

The heuristic

(1) Consider your program as an input matrix M;
(2) Initialise matrix S to $([1,0, \cdots],[0,1,0 \cdots])$ to represent your inputs;
(3) Define a Distance function Dist [i] that determines the distance of S to $M[i]$ as minimum number of combinations of S that need to be made to get $M[i]$;
(4) Generate all combinations of rows in S, determine the best new one by the norm of the distances until distances are 0 .

Matrix S of program lines

Each line of S is a combination of the previous lines and represents one line of our straight-line program.

$$
S=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0
\end{array}\right)
$$

Using a heuristic

Boyar et al. define a heuristic to approximate the shortest program.[1]

The heuristic

(1) Consider your program as an input matrix M;
(2) Initialise matrix S to $([1,0, \cdots],[0,1,0 \cdots])$ to represent your inputs;
(3) Define a Distance function Dist $[i]$ that determines the distance of S to $M[i]$ as minimum number of combinations of S that need to be made to get $M[i]$;
(4) Generate all combinations of rows in S, determine the best new one by the norm of the distances until distances are 0 .

Using a heuristic

Boyar et al. define a heuristic to approximate the shortest program.[1]

The heuristic

(1) Consider your program as an input matrix M;
(2) Initialise matrix S to $([1,0, \cdots],[0,1,0 \cdots])$ to represent your inputs;
(3) Define a Distance function Dist $[i]$ that determines the distance of S to $M[i]$ as minimum number of combinations of S that need to be made to get $M[i]$;
(4) Generate all combinations of rows in S, determine the best new one by the norm of the distances until distances are 0 .

Finding the shortest MixSlices

- We want to find a program that can do MixSlices in as few lines of the shape $u=v \oplus w$ as possible. (this is known as the shortest linear Straight-Line Program);
- Finding this SLP is NP-hard
- Tried to find the shortest program, but that wasn't feasible even on the biggest machine on campus.

Trying to find the actual shortest program

Fuhs and Schneider-Kamp show in "Synthesizing Shortest Linear Straight-Line Programs over GF(2) using SAT" how to transform the SLP problem to SAT.

Transforming SLP to SAT

(1) Input your program as a matrix and decide on a number of lines k;
(2) Define matrices B, C and mapping f;
(3) Apply constraints that only can be satisfied by valid programs;
(4) If the problem is satisfiable, extract the program from B, C, and f
(5) Repeat with lower k until UnSAT

Your program as a matrix

We can represent these programs as a matrix:

$y_{0}=x_{0}$	$\oplus x_{1}$	$\oplus x_{2}$	$\oplus x_{3}$	$\oplus x_{4}$
$y_{1}=x_{0}$	$\oplus x_{1}$	$\oplus x_{2}$	$\oplus x_{3}$	
$y_{2}=x_{0}$	$\oplus x_{1}$	$\oplus x_{2}$		$\oplus x_{4}$
$y_{3}=$		x_{2}	$\oplus x_{3}$	$\oplus x_{4}$
$y_{4}=x_{0}$				$\oplus x_{4}$

1 \& 1 \& 1 \& 1 \& 0

1 \& 1 \& 1 \& 0 \& 1

0 \& 0 \& 1 \& 1 \& 1

1 \& 0 \& 0 \& 0 \& 1\end{array}\right)\)

Trying to find the actual shortest program

Fuhs and Schneider-Kamp show in "Synthesizing Shortest Linear Straight-Line Programs over GF(2) using SAT" how to transform the SLP problem to SAT.

Transforming SLP to SAT

(1) Input your program as a matrix and decide on a number of lines k;
(2) Define matrices B, C and mapping f;
(3) Apply constraints that only can be satisfied by valid programs;
(4) If the problem is satisfiable, extract the program from B, C, and f
(5) Repeat with lower k until UnSAT

Defining B, C and f for $k=6$

$$
B=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \quad C=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) f=\left\{\begin{array}{l}
0 \mapsto ? \\
1 \mapsto ? \\
2 \mapsto ? \\
3 \mapsto ? \\
4 \mapsto ? \\
5 \mapsto ?
\end{array}\right.
$$

Trying to find the actual shortest program

Fuhs and Schneider-Kamp show in "Synthesizing Shortest Linear Straight-Line Programs over GF(2) using SAT" how to transform the SLP problem to SAT.

Transforming SLP to SAT

(1) Input your program as a matrix and decide on a number of lines k;
(2) Define matrices B, C and mapping f;
(3) Apply constraints that only can be satisfied by valid programs;
(4) If the problem is satisfiable, extract the program from B, C, and f
(5) Repeat with lower k until UNSAT

Defining constraints

One of the constraints:
Each line can exist of two incoming variables and it can only use temporary variables that we have already seen

$$
\beta_{1}=\bigvee_{0 \leq i<k} \operatorname{exactly}_{2}\left(b_{i, 1}, \cdots, b_{i, n}, c_{i, n}, \cdots, c_{i, i-1}\right)
$$

Trying to find the actual shortest program

Fuhs and Schneider-Kamp show in "Synthesizing Shortest Linear Straight-Line Programs over GF(2) using SAT" how to transform the SLP problem to SAT.

Transforming SLP to SAT

(1) Input your program as a matrix and decide on a number of lines k;
(2) Define matrices B, C and mapping f;
(3) Apply constraints that only can be satisfied by valid programs;
(4) If the problem is satisfiable, extract the program from B, C, and f.
(5) Repeat with lower k until UnSAT.

Getting our program from the valuation

$$
B=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \quad C=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0
\end{array}\right) f=\left\{\begin{array}{l}
0 \mapsto 3 \\
1 \mapsto 4 \\
2 \mapsto 2 \\
3 \mapsto 5 \\
4 \mapsto 0
\end{array}\right.
$$

Bibliography I

[1] Joan Boyar, Philip Matthews and René Peralta. 'Logic Minimization Techniques with Applications to Cryptology'. English. In: Journal of Cryptology 26.2 (2013), pp. 280-312. ISSN: 0933-2790. DOI: 10.1007/s00145-012-9124-7. URL: http://dx.doi.org/10.1007/s00145-012-9124-7.
[2] CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Robustness. URL: http://competitions.cr.yp.to/caesar.html.
[3] Elif Bilge Kavun, Martin M. Lauridsen, Gregor Leander, Christian Rechberger, Peter Schwabe and Tolga Yalçın. Prø st v1.1. 21st June 2014. URl: http://competitions.cr.yp.to/round1/proestv11.pdf.

[^0]: 1 CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Robustness.

