

Implementing Prøst on ARM11

Thom Wiggers

thom@thomwiggers.nl
https://thomwiggers.nl/proest/

Institute for Computing and Information Sciences Radboud University Nijmegen

10th April 2015

Radboud University Nijmegen

Outline

Introduction

Why optimise Prøst

Prøst

Optimising on ARM

Optimising Prøst

Radboud University Nijmegen

Outline

Introduction Why optimise Prøst

Prøst

Optimising on ARM

Optimising Prøst

What is..?

Authenticated Encryption

Authenticated Encryption is encryption in which you have both:

- confidentiality (nobody else can read this)
- authenticity (nobody else could have produced this message)

ARM11

ARM11 is a CPU architecture used mostly in mobile and embedded devices.

- Smartphones
- Raspberry Pi
- Nintendo 3DS

What is..?

Authenticated Encryption

Authenticated Encryption is encryption in which you have both:

- confidentiality (nobody else can read this)
- authenticity (nobody else could have produced this message)

ARM11

 $\mathrm{ARM11}$ is a CPU architecture used mostly in mobile and embedded devices.

- Smartphones
- Raspberry Pi
- Nintendo 3DS

Why optimise Prøst

- CAESAR¹ is an ongoing competition for Authenticated Encryption ciphers.
- "Winners" will be selected based not only on security, but also on performance in both hardware and software.
 - More implementations means judges can better compare ciphers.
- Examples of other competitions:
 - 2000, NIST announce Rijndael selected as the Advanced Encryption Standard (AES).
 - 2012, NIST announce Keccak as winner of the NIST hash function competition (SHA3).

¹ CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Robustness.

Thom Wiggers

Radboud University Nijmegen

Introduction

Why optimise Prøst

Prøst

Optimising on ARM

Optimising Prøst

Radboud University Nijmegen

 $PR \emptyset ST$ combines the $PR \emptyset ST$ permutation in various ways to arrive at different modes: COPA, OTR and APE.

The round function R_i where *i* indicates the round number, is defined as:

 $R_i(x) = (\text{AddConstants}_i \circ \text{ShiftPlanes}_i \circ \text{MixSlices} \circ \text{SubRows})(x).$

Radboud University Nijmegen

Prøst state

$\mathrm{PR} \varnothing \mathrm{ST}\text{-}128$ has a 256 bit state s which is considered as a 4 \times 4 \times 16 three-dimensional block

$$\mathbf{s} = \begin{pmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{pmatrix}$$

where each $s_{x,y}$ is a 16-bit lane.

Radboud University Nijmegen

SubRows

For each row (a, b, c, d) of the state substitute (a', b', c', d') where

 $\begin{aligned} \mathbf{a}' &= \mathbf{c} \oplus (\mathbf{a}\&b), \\ \mathbf{b}' &= \mathbf{d} \oplus (\mathbf{b}\&\mathbf{c}), \\ \mathbf{c}' &= \mathbf{a} \oplus (\mathbf{a}'\&b'), \\ \mathbf{d}' &= \mathbf{b} \oplus (\mathbf{b}'\&\mathbf{c}'). \end{aligned}$

z

Radboud University Nijmegen

MixSlices

Mix up the slices according to this big thing:

$s_{0,0}'$	=	$s_{0,0} \oplus s_{1,0} \oplus s_{1,3} \oplus s_{2,2} \oplus s_{3,0} \oplus s_{3,2} \oplus s_{3,3}$
$s_{0,1}'$	=	$s_{0,1} \oplus s_{1,0} \oplus s_{2,3} \oplus s_{3,0} \oplus s_{3,3}$
$s'_{0,2}$	=	$s_{0,2} \oplus s_{1,1} \oplus s_{2,0} \oplus s_{2,1} \oplus s_{3,0}$
<i>s</i> ′ _{0,3}	=	$s_{0,3} \oplus s_{1,2} \oplus s_{2,1} \oplus s_{2,2} \oplus s_{3,1}$
$s_{1,0}'$	=	$s_{0,0} \oplus s_{0,3} \oplus s_{1,0} \oplus s_{2,0} \oplus s_{2,2} \oplus s_{2,3} \oplus s_{3,2}$
$s_{1,1}'$	=	$s_{0,0} \oplus s_{1,1} \oplus s_{2,0} \oplus s_{2,3} \oplus s_{3,3}$
$s'_{1,2}$	=	$s_{0,1} \oplus s_{1,2} \oplus s_{2,0} \oplus s_{3,0} \oplus s_{3,1}$
$s'_{1,3}$	=	$s_{0,2} \oplus s_{1,3} \oplus s_{2,1} \oplus s_{3,1} \oplus s_{3,2}$
$s'_{2,0}$	=	$s_{0,2} \oplus s_{1,0} \oplus s_{1,2} \oplus s_{1,3} \oplus s_{2,0} \oplus s_{3,0} \oplus s_{3,3}$
$s'_{2,1}$	=	$s_{0,3} \oplus s_{1,0} \oplus s_{1,3} \oplus s_{2,1} \oplus s_{3,0}$
s _{2,2}	=	$s_{0,0} \oplus s_{0,1} \oplus s_{1,0} \oplus s_{2,2} \oplus s_{3,1}$
s _{2,3}	=	$s_{0,1} \oplus s_{0,2} \oplus s_{1,1} \oplus s_{2,3} \oplus s_{3,2}$
$s'_{3,0}$	=	$s_{0,0} \oplus s_{0,2} \oplus s_{0,3} \oplus s_{1,2} \oplus s_{2,0} \oplus s_{2,3} \oplus s_{3,0}$
$s'_{3,1}$	=	$s_{0,0} \oplus s_{0,3} \oplus s_{1,3} \oplus s_{2,0} \oplus s_{3,1}$
s ' _{3,2}	=	$s_{0,0} \oplus s_{1,0} \oplus s_{1,1} \oplus s_{2,1} \oplus s_{3,2}$
s ' _{3,3}	=	$s_{0,1} \oplus s_{1,1} \oplus s_{1,2} \oplus s_{2,2} \oplus s_{3,3}$

- Shifts the bits in the planes over the z-direction,
- The number of bits rotated differs for odd and even rounds:

Even The first, second, third and forth plane are rotated 0, 1, 8 and 9 bits, respectively,Odd The first, second, third and forth plane are rotated 0, 2, 4 and 6 bits, respectively.

Radboud University Nijmegen

Radboud University Nijmegen

AddConstants;

Adds the constants c_1 and c_2 , rotated by the round number *i* and the index of the lane, to the individual lanes.

$$\begin{pmatrix} s'_{0,0} \\ s'_{0,1} \\ s'_{0,2} \\ s'_{0,3} \\ s'_{1,0} \\ \vdots \\ s'_{3,3} \end{pmatrix} = \begin{pmatrix} s_{0,0} \oplus (c_1 \lll i \lll 0) \land \\ s_{0,1} \oplus (c_2 \lll i \lll 1) \\ s_{0,2} \oplus (c_1 \lll i \lll 2) \\ s_{0,3} \oplus (c_2 \lll i \lll 2) \\ s_{1,0} \oplus (c_1 \lll i \lll 4) \\ \vdots \\ s_{3,3} \oplus (c_2 \lll i \lll 15) \end{pmatrix}$$

Radboud University Nijmegen

Outline

Introduction

Why optimise Prøst

Prøst

Optimising on ARM

Optimising Prøst

• 14 registers + stack pointer + program counter

The same program can be much faster if it is ordered slightly differently.

The same program can be much faster if it is ordered slightly differently.

Cycle: 1

x1 = mem16[address_a] x = x1 + 10 x2 = mem16[address_b] y = x2 + 10 x3 = mem16[address_c] z = x3 + 10

The same program can be much faster if it is ordered slightly differently.

Cycle: 2

The same program can be much faster if it is ordered slightly differently.

Cycle: 3

The same program can be much faster if it is ordered slightly differently.

Cycle: 4

The same program can be much faster if it is ordered slightly differently. Cvcle: 5

x1 = mem16[address_a] x = x1 + 10 x2 = mem16[address_b] y = x2 + 10 x3 = mem16[address_c] z = x3 + 10

The same program can be much faster if it is ordered slightly differently.

Cycle: 6

The same program can be much faster if it is ordered slightly differently. Cycle: 7

x1 = mem16[address_a] x = x1 + 10 x2 = mem16[address_b] y = x2 + 10 # waiting... x3 = mem16[address_c] z = x3 + 10

x1 = mem16[address_a] x2 = mem16[address_b] x3 = mem16[address_c] x = x1 + 10 y = x2 + 10 z = x3 + 10 # done after 6 cycles!

The same program can be much faster if it is ordered slightly differently.

Cycle: 8

The same program can be much faster if it is ordered slightly differently.

Cycle: 9

x1 = mem16[address_a] x2 = mem16[address_b] x3 = mem16[address_c] x = x1 + 10 y = x2 + 10 z = x3 + 10 # done after 6 cycles!

The same program can be much faster if it is ordered slightly differently. Cycle: 10

The same program can be much faster if it is ordered slightly differently. Cycle: 11

The same program can be much faster if it is ordered slightly differently. Cycle: 12

The same program can be much faster if it is ordered slightly differently.

x1 = mem16[address_a] x2 = mem16[address_b] x3 = mem16[address_c] x = x1 + 10 y = x2 + 10 z = x3 + 10 # done after 6 cycles!

Radboud University Nijmegen

 $\ensuremath{\operatorname{ARM}}$ support rotating and shifting one of the inputs to most arithmetic operations.

$$a \leftarrow b \odot (c \ggg n)$$

Radboud University Nijmegen

Introduction

Why optimise Prøst

Prøst

Optimising on ARM

Optimising Prøst

Radboud University Nijmegen

SubRows

For each row (a, b, c, d) of the state substitute (a', b', c', d') where

 $\begin{aligned} \mathbf{a}' &= \mathbf{c} \oplus (\mathbf{a}\&b), \\ \mathbf{b}' &= \mathbf{d} \oplus (\mathbf{b}\&\mathbf{c}), \\ \mathbf{c}' &= \mathbf{a} \oplus (\mathbf{a}'\&b'), \\ \mathbf{d}' &= \mathbf{b} \oplus (\mathbf{b}'\&\mathbf{c}'). \end{aligned}$

10th April 2015

z

Radboud University Nijmegen

SubRows

```
a_and_b = mem32[address_of_s]
# b is in the upper part of a_and_b
c_and_d = mem32[address_of_s + 4]
# a' = c ^ (a & b)
newa = a_and_b & (a_and_b >>> 16)
newa ^= c_and_d
mem16[address_of_s] = newa
```

SubRows

Radboud University Nijmegen


```
a_and_b = mem32[address_of_s]
# b is in the upper part of a_and_b
c_and_d = mem32[address_of_s + 4]
# a' = c ^ (a & b)
newa = a_and_b & (a_and_b >>> 16)
newa ^= c_and_d
mem16[address_of_s] = newa
```


SubRows

```
a_and_b = mem32[address_of_s]
# b is in the upper part of a_and_b
c_and_d = mem32[address_of_s + 4]
# a' = c ^ (a & b)
newa = a_and_b & (a_and_b >>> 16)
newa ^= c_and_d
mem16[address_of_s] = newa
```


SubRows

```
a_and_b = mem32[address_of_s]
# b is in the upper part of a_and_b
c_and_d = mem32[address_of_s + 4]
# a' = c ^ (a & b)
newa = a_and_b & (a_and_b >>> 16)
newa ^= c_and_d
mem16[address_of_s] = newa
```

Radboud University Nijmegen

SubRows

Lanes are 16 bits, but our registers are 32 bits... We can load two lanes into one register in one load instruction.

```
a_and_b = mem32[address_of_s]
# b is in the upper part of a_and_b
c_and_d = mem32[address_of_s + 4]
# a' = c ^ (a & b)
newa = a_and_b & (a_and_b >>> 16)
newa ^= c_and_d
mem16[address_of_s] = newa
```

Radboud University Nijmegen

MixSlices

$s_{0,0}'$	=	$s_{0,0} \oplus s_{1,0} \oplus s_{1,3} \oplus s_{2,2} \oplus s_{3,0} \oplus s_{3,2} \oplus s_{3,3}$
$s_{0,1}'$	=	$s_{0,1} \oplus s_{1,0} \oplus s_{2,3} \oplus s_{3,0} \oplus s_{3,3}$
$s'_{0,2}$	=	$s_{0,2} \oplus s_{1,1} \oplus s_{2,0} \oplus s_{2,1} \oplus s_{3,0}$
<i>s</i> ′ _{0,3}	=	$s_{0,3} \oplus s_{1,2} \oplus s_{2,1} \oplus s_{2,2} \oplus s_{3,1}$
$s_{1,0}'$	=	$s_{0,0} \oplus s_{0,3} \oplus s_{1,0} \oplus s_{2,0} \oplus s_{2,2} \oplus s_{2,3} \oplus s_{3,2}$
$s_{1,1}'$	=	$s_{0,0} \oplus s_{1,1} \oplus s_{2,0} \oplus s_{2,3} \oplus s_{3,3}$
$s'_{1,2}$	=	$s_{0,1} \oplus s_{1,2} \oplus s_{2,0} \oplus s_{3,0} \oplus s_{3,1}$
$s'_{1,3}$	=	$s_{0,2} \oplus s_{1,3} \oplus s_{2,1} \oplus s_{3,1} \oplus s_{3,2}$
$s'_{2,0}$	=	$s_{0,2} \oplus s_{1,0} \oplus s_{1,2} \oplus s_{1,3} \oplus s_{2,0} \oplus s_{3,0} \oplus s_{3,3}$
$s'_{2,1}$	=	$s_{0,3} \oplus s_{1,0} \oplus s_{1,3} \oplus s_{2,1} \oplus s_{3,0}$
s _{2,2}	=	$s_{0,0} \oplus s_{0,1} \oplus s_{1,0} \oplus s_{2,2} \oplus s_{3,1}$
s _{2,3}	=	$s_{0,1} \oplus s_{0,2} \oplus s_{1,1} \oplus s_{2,3} \oplus s_{3,2}$
$s'_{3,0}$	=	$s_{0,0} \oplus s_{0,2} \oplus s_{0,3} \oplus s_{1,2} \oplus s_{2,0} \oplus s_{2,3} \oplus s_{3,0}$
$s'_{3,1}$	=	$s_{0,0} \oplus s_{0,3} \oplus s_{1,3} \oplus s_{2,0} \oplus s_{3,1}$
s ' _{3,2}	=	$s_{0,0} \oplus s_{1,0} \oplus s_{1,1} \oplus s_{2,1} \oplus s_{3,2}$
s ' _{3,3}	=	$s_{0,1} \oplus s_{1,1} \oplus s_{1,2} \oplus s_{2,2} \oplus s_{3,3}$

Radboud University Nijmegen

MixSlices

$s_{0,0}'$	=	$s_{0,0} \oplus s_{1,0} \oplus s_{1,3} \oplus s_{2,2} \oplus s_{3,0} \oplus s_{3,2} \oplus s_{3,3}$
$s_{0,1}'$	=	$\textbf{\textit{s}}_{0,1} \oplus \textbf{\textit{s}}_{1,0} \oplus \textbf{\textit{s}}_{2,3} \oplus \textbf{\textit{s}}_{3,0} \oplus \textbf{\textit{s}}_{3,3}$
s ' _{0,2}	=	$\textbf{\textit{s}}_{0,2} \oplus \textbf{\textit{s}}_{1,1} \oplus \textbf{\textit{s}}_{2,0} \oplus \textbf{\textit{s}}_{2,1} \oplus \textbf{\textit{s}}_{3,0}$
s ′ _{0,3}	=	$\textbf{s}_{0,3} \oplus \textbf{s}_{1,2} \oplus \textbf{s}_{2,1} \oplus \textbf{s}_{2,2} \oplus \textbf{s}_{3,1}$
$s_{1,0}'$	=	$\mathbf{s}_{0,0} \oplus \mathbf{s}_{0,3} \oplus \mathbf{s}_{1,0} \oplus \mathbf{s}_{2,0} \oplus \mathbf{s}_{2,2} \oplus \mathbf{s}_{2,3} \oplus \mathbf{s}_{3,2}$
$s_{1,1}'$	=	$s_{0,0} \oplus s_{1,1} \oplus s_{2,0} \oplus s_{2,3} \oplus s_{3,3}$
$s'_{1,2}$	=	$s_{0,1} \oplus s_{1,2} \oplus s_{2,0} \oplus s_{3,0} \oplus s_{3,1}$
$s'_{1,3}$	=	$s_{0,2} \oplus s_{1,3} \oplus s_{2,1} \oplus s_{3,1} \oplus s_{3,2}$
$s'_{2,0}$	=	$s_{0,2} \oplus s_{1,0} \oplus s_{1,2} \oplus s_{1,3} \oplus s_{2,0} \oplus s_{3,0} \oplus s_{3,3}$
$s_{2,1}'$	=	$s_{0,3} \oplus s_{1,0} \oplus s_{1,3} \oplus s_{2,1} \oplus s_{3,0}$
s _{2,2}	=	$s_{0,0} \oplus s_{0,1} \oplus s_{1,0} \oplus s_{2,2} \oplus s_{3,1}$
s _{2,3}	=	$\textbf{\textit{s}}_{0,1} \oplus \textbf{\textit{s}}_{0,2} \oplus \textbf{\textit{s}}_{1,1} \oplus \textbf{\textit{s}}_{2,3} \oplus \textbf{\textit{s}}_{3,2}$
$s'_{3,0}$	=	$\mathbf{s}_{0,0} \oplus \mathbf{s}_{0,2} \oplus \mathbf{s}_{0,3} \oplus \mathbf{s}_{1,2} \oplus \mathbf{s}_{2,0} \oplus \mathbf{s}_{2,3} \oplus \mathbf{s}_{3,0}$
$s_{3,1}'$	=	$\textbf{s}_{0,0} \oplus \textbf{s}_{0,3} \oplus \textbf{s}_{1,3} \oplus \textbf{s}_{2,0} \oplus \textbf{s}_{3,1}$
s ' _{3,2}	=	$\textbf{s}_{0,0} \oplus \textbf{s}_{1,0} \oplus \textbf{s}_{1,1} \oplus \textbf{s}_{2,1} \oplus \textbf{s}_{3,2}$
$s'_{3,3}$	=	$\textbf{s}_{0,1} \oplus \textbf{s}_{1,1} \oplus \textbf{s}_{1,2} \oplus \textbf{s}_{2,2} \oplus \textbf{s}_{3,3}$

Radboud University Nijmegen

MixSlices

$s_{0,0}'$	=	$s_{0,0} \oplus s_{1,0} \oplus s_{1,3} \oplus s_{2,2} \oplus s_{3,0} \oplus s_{3,2} \oplus s_{3,3}$
$s_{0,1}'$	=	$s_{0,1} \oplus s_{1,0} \oplus s_{2,3} \oplus s_{3,0} \oplus s_{3,3}$
$s'_{0,2}$	=	$\mathbf{s}_{0,2} \oplus \mathbf{s}_{1,1} \oplus \mathbf{s}_{2,0} \oplus \mathbf{s}_{2,1} \oplus \mathbf{s}_{3,0}$
$s'_{0,3}$	=	$s_{0,3} \oplus s_{1,2} \oplus s_{2,1} \oplus s_{2,2} \oplus s_{3,1}$
$s'_{1,0}$	=	$s_{0,0} \oplus s_{0,3} \oplus s_{1,0} \oplus s_{2,0} \oplus s_{2,2} \oplus s_{2,3} \oplus s_{3,2}$
$s_{1,1}'$	=	$s_{0,0} \oplus s_{1,1} \oplus s_{2,0} \oplus s_{2,3} \oplus s_{3,3}$
$s'_{1,2}$	=	$s_{0,1} \oplus s_{1,2} \oplus s_{2,0} \oplus s_{3,0} \oplus s_{3,1}$
$s_{1,3}'$	=	$s_{0,2} \oplus s_{1,3} \oplus s_{2,1} \oplus s_{3,1} \oplus s_{3,2}$
$s'_{2,0}$	=	$s_{0,2} \oplus s_{1,0} \oplus s_{1,2} \oplus s_{1,3} \oplus s_{2,0} \oplus s_{3,0} \oplus s_{3,3}$
$s'_{2,1}$	=	$s_{0,3} \oplus s_{1,0} \oplus s_{1,3} \oplus s_{2,1} \oplus s_{3,0}$
s ' _{2,2}	=	$s_{0,0} \oplus s_{0,1} \oplus s_{1,0} \oplus s_{2,2} \oplus s_{3,1}$
s ' _{2,3}	=	$s_{0,1} \oplus s_{0,2} \oplus s_{1,1} \oplus s_{2,3} \oplus s_{3,2}$
$s'_{3,0}$	=	$s_{0,0} \oplus s_{0,2} \oplus s_{0,3} \oplus s_{1,2} \oplus s_{2,0} \oplus s_{2,3} \oplus s_{3,0}$
$s'_{3,1}$	=	$s_{0,0} \oplus s_{0,3} \oplus s_{1,3} \oplus s_{2,0} \oplus s_{3,1}$
s ' _{3,2}	=	$s_{0,0} \oplus s_{1,0} \oplus s_{1,1} \oplus s_{2,1} \oplus s_{3,2}$
s ' _{3,3}	=	$s_{0,1} \oplus s_{1,1} \oplus s_{1,2} \oplus s_{2,2} \oplus s_{3,3}$

Radboud University Nijmegen

MixSlices

$s_{0,0}'$	=	$s_{0,0} \oplus s_{1,0} \oplus s_{1,3} \oplus s_{2,2} \oplus s_{3,0} \oplus s_{3,2} \oplus s_{3,3}$
$s_{0,1}'$	=	$\textbf{s}_{0,1} \oplus \textbf{s}_{1,0} \oplus \textbf{s}_{2,3} \oplus \textbf{s}_{3,0} \oplus \textbf{s}_{3,3}$
$s'_{0,2}$	=	$\textbf{s}_{0,2} \oplus \textbf{s}_{1,1} \oplus \textbf{s}_{2,0} \oplus \textbf{s}_{2,1} \oplus \textbf{s}_{3,0}$
$s'_{0,3}$	=	$\textbf{s}_{0,3} \oplus \textbf{s}_{1,2} \oplus \textbf{s}_{2,1} \oplus \textbf{s}_{2,2} \oplus \textbf{s}_{3,1}$
$s_{1,0}'$	=	$s_{0,0} \oplus s_{0,3} \oplus s_{1,0} \oplus s_{2,0} \oplus s_{2,2} \oplus s_{2,3} \oplus s_{3,2}$
$s_{1,1}'$	=	$s_{0,0} \oplus s_{1,1} \oplus s_{2,0} \oplus s_{2,3} \oplus s_{3,3}$
$s'_{1,2}$	=	$s_{0,1} \oplus s_{1,2} \oplus s_{2,0} \oplus s_{3,0} \oplus s_{3,1}$
$s_{1,3}'$	=	$s_{0,2} \oplus s_{1,3} \oplus s_{2,1} \oplus s_{3,1} \oplus s_{3,2}$
$s'_{2,0}$	=	$s_{0,2} \oplus s_{1,0} \oplus s_{1,2} \oplus s_{1,3} \oplus s_{2,0} \oplus s_{3,0} \oplus s_{3,3}$
$s'_{2,1}$	=	$s_{0,3} \oplus s_{1,0} \oplus s_{1,3} \oplus s_{2,1} \oplus s_{3,0}$
s '_2,2	=	$s_{0,0} \oplus s_{0,1} \oplus s_{1,0} \oplus s_{2,2} \oplus s_{3,1}$
s _{2,3}	=	$\mathbf{s}_{0,1} \oplus \mathbf{s}_{0,2} \oplus \mathbf{s}_{1,1} \oplus \mathbf{s}_{2,3} \oplus \mathbf{s}_{3,2}$
$s'_{3,0}$	=	$\mathbf{s}_{0,0} \oplus \mathbf{s}_{0,2} \oplus \mathbf{s}_{0,3} \oplus \mathbf{s}_{1,2} \oplus \mathbf{s}_{2,0} \oplus \mathbf{s}_{2,3} \oplus \mathbf{s}_{3,0}$
$s'_{3,1}$	=	$\textbf{\textit{s}}_{0,0} \oplus \textbf{\textit{s}}_{0,3} \oplus \textbf{\textit{s}}_{1,3} \oplus \textbf{\textit{s}}_{2,0} \oplus \textbf{\textit{s}}_{3,1}$
s ' _{3,2}	=	$\textbf{\textit{s}}_{0,0} \oplus \textbf{\textit{s}}_{1,0} \oplus \textbf{\textit{s}}_{1,1} \oplus \textbf{\textit{s}}_{2,1} \oplus \textbf{\textit{s}}_{3,2}$
$s'_{3,3}$	=	$\textbf{s}_{0,1} \oplus \textbf{s}_{1,1} \oplus \textbf{s}_{1,2} \oplus \textbf{s}_{2,2} \oplus \textbf{s}_{3,3}$

Radboud University Nijmegen

MixSlices

$s'_{0,0}$	=	$s_{0,0} \oplus s_{1,0} \oplus s_{1,3} \oplus s_{2,2} \oplus s_{3,0} \oplus s_{3,2} \oplus s_{3,3}$
$s_{0,1}'$	=	$\textbf{s}_{0,1} \oplus \textbf{s}_{1,0} \oplus \textbf{s}_{2,3} \oplus \textbf{s}_{3,0} \oplus \textbf{s}_{3,3}$
$s'_{0,2}$	=	$\mathbf{s}_{0,2} \oplus \mathbf{s}_{1,1} \oplus \mathbf{s}_{2,0} \oplus \mathbf{s}_{2,1} \oplus \mathbf{s}_{3,0}$
$s'_{0,3}$	=	$\mathbf{s}_{0,3} \oplus \mathbf{s}_{1,2} \oplus \mathbf{s}_{2,1} \oplus \mathbf{s}_{2,2} \oplus \mathbf{s}_{3,1}$
$s'_{1,0}$	=	$s_{0,0} \oplus s_{0,3} \oplus s_{1,0} \oplus s_{2,0} \oplus s_{2,2} \oplus s_{2,3} \oplus s_{3,2}$
$s_{1,1}'$	=	$s_{0,0} \oplus s_{1,1} \oplus s_{2,0} \oplus s_{2,3} \oplus s_{3,3}$
$s'_{1,2}$	=	$s_{0,1} \oplus s_{1,2} \oplus s_{2,0} \oplus s_{3,0} \oplus s_{3,1}$
$s_{1,3}'$	=	$s_{0,2} \oplus s_{1,3} \oplus s_{2,1} \oplus s_{3,1} \oplus s_{3,2}$
$s'_{2,0}$	=	$s_{0,2} \oplus s_{1,0} \oplus s_{1,2} \oplus s_{1,3} \oplus s_{2,0} \oplus s_{3,0} \oplus s_{3,3}$
$s'_{2,1}$	=	$s_{0,3} \oplus s_{1,0} \oplus s_{1,3} \oplus s_{2,1} \oplus s_{3,0}$
s '_2,2	=	$s_{0,0} \oplus s_{0,1} \oplus s_{1,0} \oplus s_{2,2} \oplus s_{3,1}$
s _{2,3}	=	$s_{0,1} \oplus s_{0,2} \oplus s_{1,1} \oplus s_{2,3} \oplus s_{3,2}$
$s'_{3,0}$	=	$s_{0,0} \oplus s_{0,2} \oplus s_{0,3} \oplus s_{1,2} \oplus s_{2,0} \oplus s_{2,3} \oplus s_{3,0}$
$s'_{3,1}$	=	$s_{0,0} \oplus s_{0,3} \oplus s_{1,3} \oplus s_{2,0} \oplus s_{3,1}$
s ' _{3,2}	=	$s_{0,0} \oplus \underline{s_{1,0}} \oplus \underline{s_{1,1}} \oplus \underline{s_{2,1}} \oplus \underline{s_{3,2}}$
s ' _{3,3}	=	$s_{0,1} \oplus s_{1,1} \oplus s_{1,2} \oplus s_{2,2} \oplus s_{3,3}$

Radboud University Nijmegen

Finding the shortest MixSlices

- We want to find a program that can do MixSlices in as few lines of the shape u = v ⊕ w as possible. (this is known as the shortest linear Straight-Line Program);
- Finding this SLP is NP-hard
- Tried to find *the* shortest program, but that wasn't feasible even on the biggest machine on campus.

Radboud University Nijmegen

Heuristic results

A new MixSlices in 48 instead of 72 XORs!

t_1	=	<i>x</i> ₀	\oplus	<i>x</i> ₁₄	t_6	=	x_1	\oplus	<i>x</i> ₁₃	t_{27}	=	t_2	\oplus	t ₂₂
t_3	=	t_1	\oplus	<i>x</i> ₁₄	t_{22}	=	<i>x</i> ₁₀	\oplus	t_6	t_{16}	=	<i>x</i> ₆	\oplus	<i>x</i> ₁₀
t_5	=	<i>X</i> 9	\oplus	X_5	<i>Y</i> 10	=	t_1	\oplus	t_{22}	<i>Y</i> 6	=	t_{16}	\oplus	t ₂₇
<i>y</i> ₁₄	=	t_3	\oplus	t_5	t_9	=	<i>x</i> ₂	\oplus	<i>x</i> ₁₄	t_{28}	=	<i>x</i> 7	\oplus	<i>t</i> ₁₁
t_{12}	=	<i>x</i> ₁₀	\oplus	t_3	t_{23}	=	<i>X</i> 9	\oplus	t_9	y_0	=	t_{12}	\oplus	t ₂₈
t_2	=	<i>x</i> ₁₂	\oplus	<i>x</i> ₈	t_8	=	<i>X</i> 7	\oplus	<i>x</i> ₁₃	t_{30}	1	x_8	\oplus	t ₈
t_4	=	t_2	\oplus	<i>x</i> ₂	y 7	=	t_8	\oplus	t_{23}	t7		<i>x</i> 0	\oplus	<i>X</i> 3
<i>y</i> ₂	=	t_4	\oplus	t_5	t_{24}	=	t_{10}	\oplus	t_{23}	<i>Y</i> 13	-	t7	\oplus	t ₃₀
t_{14}	=	<i>x</i> ₆	\oplus	t_4	y_{11}	=	t_5	\oplus	t_{24}	t_{31}		<i>x</i> ₁₃	\oplus	t_{17}
t_{10}	=	x_1	\oplus	<i>x</i> ₁₁	t_{25}	=	<i>x</i> ₀	\oplus	t_{13}	<i>y</i> ₃	œ.	t_{16}	\oplus	t_{31}
t_{19}	=	<i>X</i> 4	\oplus	t_{10}	t_{15}	=	<i>X</i> 5	\oplus	X15	t_{32}	=	x_1	\oplus	t ₁₆
t_{11}	=	<i>x</i> ₁₂	\oplus	<i>x</i> ₁₅	y_5	=	t_{15}	\oplus	t_{25}	<i>Y</i> 15	=	t_{15}	\oplus	t ₃₂
y_1	=	t_{19}	\oplus	t_{11}	t_{17}	=	<i>x</i> ₃	\oplus	<i>X</i> 9	t ₃₃	=	<i>x</i> ₁₅	\oplus	<i>t</i> ₁₄
t_{21}	=	<i>x</i> ₃	\oplus	t_{12}	t_{26}	=	<i>x</i> ₁₂	\oplus	t_{26}	y_8	=	t_{18}	\oplus	t ₃₃
t_{13}	=	<i>x</i> 8	\oplus	<i>x</i> ₁₁	t_{18}	=	<i>X</i> 4	\oplus	<i>X</i> 7	t ₃₄	=	<i>x</i> ₁₁	\oplus	t_{14}
<i>Y</i> 4	=	t_{13}	\oplus	t_{21}	y 9	=	t_{18}	\oplus	t_{26}	<i>Y</i> 12	=	t7	\oplus	t_{34}

Radboud University Nijmegen

Heuristic results

A new MixSlices in 48 instead of 72 XORs!

t_1	=	<i>x</i> ₀	\oplus	x_{14}	t ₆	=	x_1	\oplus	<i>x</i> ₁₃	t_{27}	=	t_2	\oplus	t ₂₂
t_3	=	t_1	\oplus	x_{14}	t ₂₂	=	<i>x</i> ₁₀	\oplus	t_6	t_{16}	=	<i>x</i> ₆	\oplus	<i>x</i> ₁₀
t_5	=	<i>X</i> 9	\oplus	<i>X</i> 5	<i>Y</i> 10	=	t_1	\oplus	t_{22}	<i>Y</i> 6	=	t_{16}	\oplus	t ₂₇
<i>y</i> ₁₄	=	t_3	\oplus	t_5	t_9	=	<i>x</i> ₂	\oplus	<i>x</i> ₁₄	t_{28}	=	<i>x</i> 7	\oplus	<i>t</i> ₁₁
t_{12}	=	<i>x</i> ₁₀	\oplus	t_3	t_{23}	=	<i>X</i> 9	\oplus	t_9	y_0	=	t_{12}	\oplus	t ₂₈
t_2	=	<i>x</i> ₁₂	\oplus	<i>x</i> 8	t_8	=	<i>X</i> 7	\oplus	<i>x</i> ₁₃	t_{30}	1	x_8	\oplus	t ₈
t_4	=	t_2	\oplus	<i>x</i> ₂	Y 7	=	t_8	\oplus	t_{23}	t7	4	x_0	\oplus	<i>X</i> 3
<i>y</i> ₂	=	t_4	\oplus	t_5	t_{24}	=	t_{10}	\oplus	t_{23}	<i>Y</i> 13	=	t7	\oplus	t ₃₀
t_{14}	=	<i>x</i> ₆	\oplus	t_4	y_{11}	=	t_5	\oplus	t_{24}	t_{31}	1	<i>x</i> ₁₃	\oplus	t_{17}
t_{10}	=	x_1	\oplus	<i>x</i> ₁₁	t_{25}	=	<i>x</i> ₀	\oplus	t_{13}	<i>y</i> ₃	œ.	t_{16}	\oplus	t_{31}
t_{19}	=	<i>X</i> 4	\oplus	t_{10}	t_{15}	=	<i>X</i> 5	\oplus	<i>x</i> ₁₅	t_{32}	=	x_1	\oplus	t ₁₆
t_{11}	=	<i>x</i> ₁₂	\oplus	x_{15}	y_5	=	t_{15}	\oplus	t_{25}	y_{15}	- -	t_{15}	\oplus	t ₃₂
y_1	=	t_{19}	\oplus	t_{11}	t_{17}	=	<i>x</i> 3	\oplus	<i>X</i> 9	t ₃₃	=	<i>x</i> ₁₅	\oplus	<i>t</i> ₁₄
t_{21}	=	<i>x</i> ₃	\oplus	t_{12}	t_{26}	=	<i>x</i> ₁₂	\oplus	t_{26}	y_8	=	t_{18}	\oplus	t ₃₃
t_{13}	=	<i>x</i> 8	\oplus	<i>x</i> ₁₁	t_{18}	=	<i>X</i> 4	\oplus	<i>X</i> 7	t_{34}	=	<i>x</i> ₁₁	\oplus	t_{14}
<i>Y</i> 4	=	t_{13}	\oplus	t_{21}	y 9	=	t_{18}	\oplus	t_{26}	<i>Y</i> 12	=	t7	\oplus	t 34

Radboud University Nijmegen

- Shifts the bits in the planes over the z-direction,
- The number of bits rotated differs for odd and even rounds:

Even The first, second, third and forth plane are rotated 0, 1, 8 and 9 bits, respectively,Odd The first, second, third and forth plane are rotated 0, 2, 4 and 6 bits, respectively.

ShiftPlanes

Radboud University Nijmegen

To rotate a 16 bit lane inside a 32-bit register, we need to first double the register:

a = mem16[addr] a = a | (a << 16) a >>>= 2

Unfortunately, that means we can't use our inline rotations any more.

Radboud University Nijmegen

AddConstants;

Adds the constants c_1 and c_2 , rotated by the round number *i* and the index of the lane, to the individual lanes.

$$\begin{pmatrix} s'_{0,0} \\ s'_{0,1} \\ s'_{0,2} \\ s'_{0,3} \\ s'_{1,0} \\ \vdots \\ s'_{3,3} \end{pmatrix} = \begin{pmatrix} s_{0,0} \oplus (c_1 \ll i \ll 0) \\ s_{0,1} \oplus (c_2 \ll i \ll 1) \\ s_{0,2} \oplus (c_1 \ll i \ll 2) \\ s_{0,3} \oplus (c_2 \ll i \ll 3) \\ s_{1,0} \oplus (c_1 \ll i \ll 4) \\ \vdots \\ s_{3,3} \oplus (c_2 \ll i \ll 15) \end{pmatrix}$$

Radboud University Nijmegen

AddConstants

Here, we can make good use of the free rotations:

```
x_0 = mem16[address]
newx0 = x_0 ^ (c1 >>> 31)
```

By reusing results still in memory from ShiftPlanes we don't need to shift registers loaded using the "two lanes in one register"-approach.

Radboud University Nijmegen

Benchmarks

Putting it all together, we get the following results from the SUPERCOP benchmarking suite for cryptography:

Implementation	APE	COPA	OTR
Reference (C)	2,975,123	2,402,577	1,569,582
Mine (ARM asm)	1,900,274	1,714,321	848,100
Performance improvement	36%	28%	46%

Table: Comparison of cycle counts

Radboud University Nijmegen

Conclusions

Results

- Good performance improvement,
- New implementation of MixSlices.

Possible further work

- Optimise PRØST-256,
- Optimise $PR \emptyset ST$ for other platforms,
- Optimise other ciphers using these techniques,
- Backport these techniques to a faster c-implementation.

Overtime References

Radboud University Nijmegen

Outline

Overtime

Approximating the shortest MixSlices Searching the shortest MixSlices

Using a heuristic

Boyar et al. define a heuristic to approximate the shortest program. [1]

The heuristic

- 1 Consider your program as an input matrix M;
- Initialise matrix S to ([1,0,···], [0,1,0···]) to represent your inputs;
- Obtained Between Definition Dist[i] that determines the distance of S to M[i] as minimum number of combinations of S that need to be made to get M[i];
- Generate all combinations of rows in S, determine the best new one by the norm of the distances until distances are 0.

Using a heuristic

Boyar et al. define a heuristic to approximate the shortest program.[1]

The heuristic

- 1 Consider your program as an input matrix M;
- Initialise matrix S to ([1,0,...], [0,1,0...]) to represent your inputs;
- Obefine a Distance function Dist[i] that determines the distance of S to M[i] as minimum number of combinations of S that need to be made to get M[i];
- ④ Generate all combinations of rows in S, determine the best new one by the norm of the distances until distances are 0.

Overtime References

Radboud University Nijmegen

Your program as a matrix

We can represent these programs as a matrix:

$y_0 = x_0$	$\oplus x_1$	$\oplus x_2$	$\oplus x_3$	$\oplus x_4$	/1	1	1 1	1
$y_1 = x_0$	$\oplus x_1$	$\oplus x_2$	$\oplus x_3$		1	1	1 1	0
$y_2 = x_0$	$\oplus x_1$	$\oplus x_2$		$\oplus x_4$	$M = \begin{bmatrix} 1 \end{bmatrix}$	1	1 0	1
$y_3 =$		<i>x</i> ₂	$\oplus x_3$	$\oplus x_4$	0	0	1 1	1
$y_4 = x_0$				$\oplus x_4$	$M = \begin{pmatrix} 1\\1\\1\\0\\1 \end{pmatrix}$	0	0 0	1/

Boyar et al. define a heuristic to approximate the shortest program.[1]

The heuristic

- 1 Consider your program as an input matrix M;
- Initialise matrix S to ([1,0,···], [0,1,0···]) to represent your inputs;
- Obefine a Distance function Dist[i] that determines the distance of S to M[i] as minimum number of combinations of S that need to be made to get M[i];
- ④ Generate all combinations of rows in S, determine the best new one by the norm of the distances until distances are 0.

Overtime References

Radboud University Nijmegen

Matrix S of program lines

Each line of S is a combination of the previous lines and represents one line of our straight-line program.

$$S=egin{pmatrix} 1&0&0&0&0\ 0&1&0&0&0\ 0&0&1&0&0\ 0&0&0&1&0\ 0&0&0&0&1\ 0&1&0&1&0\ 0&1&0&1&0\ \dots\end{pmatrix}$$

Using a heuristic

Boyar et al. define a heuristic to approximate the shortest program.[1]

The heuristic

- 1 Consider your program as an input matrix M;
- Initialise matrix S to ([1,0,···], [0,1,0···]) to represent your inputs;
- Obtained Between Definition Dist[i] that determines the distance of S to M[i] as minimum number of combinations of S that need to be made to get M[i];
- ④ Generate all combinations of rows in S, determine the best new one by the norm of the distances until distances are 0.

Using a heuristic

Boyar et al. define a heuristic to approximate the shortest program. [1]

The heuristic

- 1 Consider your program as an input matrix M;
- Initialise matrix S to ([1,0,···], [0,1,0···]) to represent your inputs;
- Obtained Between Definition Dist[i] that determines the distance of S to M[i] as minimum number of combinations of S that need to be made to get M[i];
- Generate all combinations of rows in S, determine the best new one by the norm of the distances until distances are 0.

Finding the shortest MixSlices

- We want to find a program that can do MixSlices in as few lines of the shape u = v ⊕ w as possible. (this is known as the shortest linear Straight-Line Program);
- Finding this SLP is NP-hard
- Tried to find *the* shortest program, but that wasn't feasible even on the biggest machine on campus.

Trying to find the actual shortest program

Fuhs and Schneider-Kamp show in "Synthesizing Shortest Linear Straight-Line Programs over GF(2) using SAT" how to transform the SLP problem to SAT.

Transforming SLP to SAT

- Input your program as a matrix and decide on a number of lines k;
- 2 Define matrices *B*, *C* and mapping *f*;
- 8 Apply constraints that only can be satisfied by valid programs;
- If the problem is satisfiable, extract the program from B, C, and f.
- **5** Repeat with lower k until UNSAT.

Overtime References

Radboud University Nijmegen

We can represent these programs as a matrix:

$y_0 = x_0$	$\oplus x_1$	$\oplus x_2$	$\oplus x_3$	$\oplus x_4$	(<i>`</i> 1	1	1 1	1
$y_1 = x_0$	$\oplus x_1$	$\oplus x_2$	$\oplus x_3$			1	1	1 1	0
$y_2 = x_0$	$\oplus x_1$	$\oplus x_2$		$\oplus x_4$	M =	1	1	1 0	1
$y_3 =$		<i>x</i> ₂	$\oplus x_3$	$\oplus x_4$		0	0	$1 \ 1$	1
$y_4 = x_0$				$\oplus x_4$	$M = \left($	1	0	0 0	1/

Trying to find the actual shortest program

Fuhs and Schneider-Kamp show in "Synthesizing Shortest Linear Straight-Line Programs over GF(2) using SAT" how to transform the SLP problem to SAT.

Transforming SLP to SAT

- Input your program as a matrix and decide on a number of lines k;
- **2** Define matrices B, C and mapping f;
- Opply constraints that only can be satisfied by valid programs;
- If the problem is satisfiable, extract the program from B, C, and f.
- **5** Repeat with lower k until UNSAT.

Overtime References

Defining B, C and f for k = 6

Trying to find the actual shortest program

Fuhs and Schneider-Kamp show in "Synthesizing Shortest Linear Straight-Line Programs over GF(2) using SAT" how to transform the SLP problem to SAT.

Transforming SLP to SAT

- Input your program as a matrix and decide on a number of lines k;
- **2** Define matrices B, C and mapping f;
- 3 Apply constraints that only can be satisfied by valid programs;
- If the problem is satisfiable, extract the program from B, C, and f.
- **5** Repeat with lower k until UNSAT.

Overtime References

Radboud University Nijmegen

Defining constraints

One of the constraints:

Each line can exist of two incoming variables and it can only use temporary variables that we have already seen

$$eta_1 = \bigvee_{0 \leq i < k} \operatorname{exactly}_2(b_{i,1}, \cdots, b_{i,n}, c_{i,n}, \cdots, c_{i,i-1})$$

Trying to find the actual shortest program

Fuhs and Schneider-Kamp show in "Synthesizing Shortest Linear Straight-Line Programs over GF(2) using SAT" how to transform the SLP problem to SAT.

Transforming SLP to SAT

- Input your program as a matrix and decide on a number of lines k;
- **2** Define matrices B, C and mapping f;
- 8 Apply constraints that only can be satisfied by valid programs;
- **4** If the problem is satisfiable, extract the program from B, C, and f.
- **6** Repeat with lower k until UNSAT.

Getting our program from the valuation

$$B = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \quad C = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} f = \begin{cases} 0 \mapsto 3 \\ 1 \mapsto 4 \\ 2 \mapsto 2 \\ 3 \mapsto 5 \\ 4 \mapsto 0 \end{cases}$$

- Joan Boyar, Philip Matthews and René Peralta. 'Logic Minimization Techniques with Applications to Cryptology'. English. In: Journal of Cryptology 26.2 (2013), pp. 280-312. ISSN: 0933-2790. DOI: 10.1007/s00145-012-9124-7. URL: http://dx.doi.org/10.1007/s00145-012-9124-7.
- [2] CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Robustness. URL: http://competitions.cr.yp.to/caesar.html.
- [3] Elif Bilge Kavun, Martin M. Lauridsen, Gregor Leander, Christian Rechberger, Peter Schwabe and Tolga Yalçın. Prø st v1.1. 21st June 2014. URL: http://competitions.cr.yp.to/round1/proestv11.pdf.