
147 Optimising Prøst on ARM11
Thom Wiggers

Institute for Computer and Information Sciences, Radboud University, Nijmegen

Prøst

Prøst was a contestant in the CAESAR competition for authenticated encryption.
Authenticated encryption algorithms provide not only confidentiality, but also
authenticity and integrity. High-speed implementations of ciphers competing in these
competitions help asses the suitability for wide-spread deployment.
Prøst-128 has a 256-bit state s which is considered as a 4× 4× 16
three-dimensional block

s =


s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3


where each sx ,y is a 16-bit value. Prøst’s authors call these lanes. The terms row,
column, slice, plane and sheet for the other parts of the state are described below.
The permutation consists, in the Prøst-128 case, of 16 rounds. The round function
Ri : F256

2 → F256
2 with 0 ≤ i < 16, can be defined as

Ri(x) = (AddConstantsi ◦ ShiftPlanesi
◦ MixSlices ◦ SubRows)(x).

Row Column Lane Slice Plane Sheet

Nomenclature for state parts

MixSlices

Mix up the slices according to a matrix, this gives operations such as:

s ′0,0 = s0,0 ⊕ s1,0 ⊕ s1,3 ⊕ s2,2 ⊕ s3,0 ⊕ s3,2 ⊕ s3,3
s ′0,1 = s0,1 ⊕ s1,0 ⊕ s2,3 ⊕ s3,0 ⊕ s3,3
· · ·
s ′2,0 = s0,2 ⊕ s1,0 ⊕ s1,2 ⊕ s1,3 ⊕ s2,0 ⊕ s3,0 ⊕ s3,3
· · ·

This system has 72 xors, using the Boyar-Matthews-Peralta heuristic we were able to
get a system with only 48 xors.

Boyar-Matthews-Peralta SLP heuristic

I Consider your program as an input matrix M ;

I Initialise matrix S to ([1, 0, · · ·], [0, 1, 0 · · ·]) to represent your inputs;

I Define Dist[i] as the minimum number of additions of rows in S to get M [i];

I Choose new combination by lowest norm of the Dist vector.

y0 = x0 ⊕x1 ⊕x2 ⊕x3 ⊕x4
y1 = x0 ⊕x1 ⊕x2 ⊕x3
y2 = x0 ⊕x1 ⊕x2 ⊕x4
y3 = x2 ⊕x3 ⊕x4
y4 = x0 ⊕x4

M =


1 1 1 1 1
1 1 1 1 0
1 1 1 0 1
0 0 1 1 1
1 0 0 0 1

 S =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 1 0
· · ·


x0
x1
x2
x3
x4
t0 = x1 ⊕ x3
· · ·

Finding the true shortest program using SAT

I Input your program as an (m × n) matrix and decide on a number of lines k ;

I Define matrices B : (m × k) for the inputs used, C : (k × k) for the intermediates
used and mapping f from intermediates to outputs;

I Apply constraints that only can be satisfied by valid programs;

I If the problem is satisfiable, extract the program from B ,C , and f .

I Repeat with lower k until UnSAT.

Each line has exactly two inputs: β1 =
∨

0≤i<k

exactly2(bi ,1, · · · , bi ,n, ci ,n, · · · , ci ,i−1)

B =


1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 C =


0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 1 0


t0 = x0 ⊕ x4
t1 = x1 ⊕ t0
t2 = x2 ⊕ t1
t3 = x3 ⊕ t2
t4 = x4 ⊕ t3
t5 = t2 ⊕ t4

f =


0 7→ 3

1 7→ 4

2 7→ 2

3 7→ 5

4 7→ 0

ARM11

arm11 is range of microprocessors that are commonly found in for example smart
phones, the Raspberry Pi and the Nintendo 3DS. Hundreds of millions of these chips
are deployed worldwide. arm11 is an implementation of the armv6 architecture.
This is a 32-bit architecture that provides the programmer with 16 registers, including
the stack pointer and program counter.

Some assembly optimisation tricks

x1 = mem16[address_a]

x1 += 10

x2 = mem16[address_b]

x2 += 10

x3 = mem16[address_c]

x3 += 10

Latencies slow execution down
(12 cycles)

x1 = mem16[address_a]

x2 = mem16[address_b]

x3 = mem16[address_c]

x1 += 10

x2 += 10

x3 += 10

Hiding load latencies (6 cycles)

Equivalent programs, but different execution times

a = s_{0,0}, b = s_{0,1}, c = s_{0,3}

a’ = c ^ (a & b)

a_and_b, c_and_d = mem64[address_of_s]

newa = a_and_b & (a_and_b >>> 16)

newa ^= c_and_d

only write back the lower 16 bits

mem16[address_of_s] = newa

An example part of SubRows using two lanes in one register and wide
loads.

Benchmark results

Implementation ape copa otr

Reference (C)a 2,976,123 2,402,577 1,569,582
arm Assembly 1,900,274a 1,648,407a 848,100b

Improvement 36% 28% 46%
a Compiled with gcc -funroll-loops -fno-schedule-insns -O3 -fomit-frame-pointer

b Compiled with gcc -O3 -fomit-frame-pointer

More information

Find the developed software and my thesis
at https://thomwiggers.nl/proest/.

https://thomwiggers.nl/proest/

