
Practically Solving LPN

Thom Wiggers
Radboud University, Nijmegen, The Netherlands

thom@thomwiggers.nl

Simona Samardjiska
Radboud University, Nijmegen, The Netherlands

simonas@cs.ru.nl

Abstract—The best algorithms for the Learning Parity with Noise
(LPN) problem require sub-exponential time and memory. This
often makes memory, and not time, the limiting factor for
practical attacks, which seem to be out of reach even for relatively
small parameters. In this paper, we try to bring the state-of-the-
art in solving LPN closer to the practical realm. We improve upon
the existing algorithms by modifying the Coded-BKW algorithm
to work under various memory constrains. We correct and expand
previous analysis and experimentally verify our findings. As a
result we were able to mount practical attacks on the largest
parameters reported to date using only 239 bits of memory.

I. Introduction
The Learning Parity with Noise (LPN) problem has its roots

in machine learning, where it is connected to a crucial question
of learning functions in the presence of noise. But LPN is
also a fundamental problem in the fields of coding theory and
cryptography [3]. In essence, the LPN problem asks to recover
a secret vector given noisy system of linear equations over F2,
where the noise follows a Bernoulli distribution. The extension
of LPN to fields larger than F2, Learning With Errors (LWE),
forms the basis of many submissions in the second and third
round of the NIST Post-Quantum standardization process [4].
Both LPN and LWE are believed to be hard even for adversaries
with access to a quantum computer.
A lot of effort has been put in determining the hardness of

the LPN problem. The best algorithms run in sub-exponential
time, but also require sub-exponential amounts of memory [1],
[5]–[7]. This is the main practical limitation, even for small
sizes of the problem. Only recently have a series of algorithms
been proposed that try to balance the demands on memory
and time [2], [8], [9]. This line of research is however far
from closed, since it is still not clear what the limits are of
time-memory trade-offs for LPN algorithms.

A. Contributions
The focus of this paper are algorithms for solving LPN in a

low memory regime. We show that it is possible to modify and
enhance the Coded-BKW algorithm [7] to be used when only
restricted memory is available, and that it is possible to achieve
scalable time-memory trade-off for various parameters. We
adopt the approach from [1] and devise an improved and more
efficient chain finding algorithm under memory restrictions.
Unlike suggested in [2], we show that for mid-range parameters
the WHT decoding method is superior to the Gauss decoding
method and is more suitable for combining with other reduction
steps. This can be seen by our concrete complexity estimates
in Table I that improve significantly over the similar Hybrid
algorithm from [2]. Note, that without any reduction steps, using

We thank the authors of [1] for providing the implementation of their
chain-finding algorithm and the authors of [2] for providing their com-
plexity calculation script. This work was supported by ERC Starting Grant
No. 805031 (EPOQUE).

MMT [10] is still superior for larger parameters as reported
in [2], however these parameters are already far from practical
reach. We verify our results by practically mounting an attack
against LPN for the largest parameters reported so far, using
only 239 bits of memory.

B. Organization
In Section II we give the necessary preliminaries, and

in Section III we present the known solving techniques for the
LPN problem. Section IV provides analysis and comparison
of the two decoding methods we are interested in: WHT and
Gauss. In Section V and Section VI we present our main
results and the obtained best reduction chains under different
memory constrains. Finally in Section VII we experimentally
verify our findings.

II. Preliminaries
We will denote vectors and matrices with bold-face letters,

like v or M. We write inner product of two vectors as 〈v1, v2〉
The Hamming weight of v is 𝑤𝑡 (v). We write Ber𝜏 for a
Bernoulli distribution with parameter 𝜏. Bin𝑛

𝜏 is the binomial
distribution with 𝑛 trails and success rate 𝜏. We write 𝑦

$← 𝑌

when we uniformly sample 𝑦 from 𝑌 .
The LPN Search problem can be defined using the following

definition from [11].
Definition 1: (Search LPN problem). Let s $← F𝑘2 be a

secret vector of length 𝑘 and let 0 6 𝜏 < 1
2 be a constant noise

parameter. An LPN oracle OLPN
s,𝜏 outputs independent random

samples (a, 𝑐) according to the distribution:{
(a, 𝑐)

��� a $← F𝑘2 , 𝑐 = 〈a, s〉 + 𝑒, 𝑒 ← Ber𝜏
}
.

The Search LPN Problem, denoted by LPN𝑛
𝑘,𝜏 is to find the

(secret) vector s, given access to the LPN oracle.
We will be interested in algorithms that solve LPN𝑛

𝑘,𝜏 in
time 𝑡, using at most 𝑛 samples and using at most 𝑚 bits of
memory. Such an algorithm may fail with a certain probability 𝜃.
Sometimes, instead of the noise parameter 𝜏 we will use the bias
of an LPN instance LPN𝑘,𝜏 , defined as 𝛿 = 𝐸

(
(−1)𝑋

)
= 1−2𝜏

where 𝑋 ∼ Ber𝜏 . We will refer to the bias of the secret as 𝛿𝑠 .
III. Solving LPN problems

The known algorithms that solve an LPN instance LPN𝑘,𝜏

typically follow a common structure. We can usually split them
in two phases: a reduction phase in which a reduction algorithm
reduces the problem to a smaller one LPN𝑘′,𝜏′ , 𝑘 ′ 6 𝑘; and
a decoding phase in which a decoding algorithm recovers the
secret of the smaller LPN instance. Intuitively, a smaller LPN
problem is easier to decode, but a reduction typically increases
the level of noise and may change the number of samples.
It is possible to apply a sequence of reduction algorithms

before decoding the reduced LPN𝑘′,𝜏′ instance. This is already

mailto:thom@thomwiggers.nl
mailto:simonas@cs.ru.nl

Input: 𝑛 samples (a, 𝑐) from OLPN
s,𝜏 , list of reduction algorithms R, and

decoding algorithm 𝐷

Output: Information on s
for 𝑅 ∈ R do
Apply 𝑅 to obtain LPN𝑘′,𝜏′ , 𝑘′ 6 𝑘 and 𝑛′ samples.
𝑘 ← 𝑘′, 𝑛← 𝑛′

end for
Use decoding algorithm 𝐷, consuming 𝑛 samples.
return Information on s

Figure 1. General LPN decoding algorithm

implied by the original BKW algorithm. Bogos et al. [1]
proposed using chains of different reduction algorithms before
applying a decoding algorithm. We summarize this meta-
algorithm in Figure 1.
Note that most decoding algorithms recover only part of the

secret. However, the algorithm can be repeated to obtain more
information. We will, as in the literature, only discuss the first
run of the algorithm, since this is the most resource-intensive
of recovering the full s.

A. Reduction algorithms
We will now briefly discuss algorithms that reduce an

LPN𝑛
𝑘,𝜏 problem to an LPN𝑛′

𝑘′,𝜏′ problem. For more details on
these algorithms, we refer to the cited works.

1) drop-reduce(𝑏): Deletes all samples that do not have
𝑏 zero bits at the end.
𝑘 ′ = 𝑘 − 𝑏; 𝑛′ = 𝑛2−𝑏; 𝛿′ = 𝛿; 𝛿′𝑠 = 𝛿𝑠; 𝑡 = O (𝑘𝑛); 𝑚 =

O (𝑘𝑛).
2) xor-reduce(𝑏) [6]: Partitions samples by the last 𝑏

bits and sums all pairs of vectors within each partition. This
cancels out the last 𝑏 bits. The bias of the LPN problem is
squared as per the piling-up lemma: the bias of the sum of 𝑛
Bernoulli variables with bias 𝛿 is 𝛿𝑛.
𝑘 ′ = 𝑘 − 𝑏; 𝑛′ = 𝑛(𝑛−1)

2𝑏+1 ; 𝛿′ = 𝛿2; 𝛿′𝑠 = 𝛿𝑠;
𝑡 = O (𝑘 max(𝑛, 𝑛′)); 𝑚 = O (max(𝑘𝑛, 𝑘 ′𝑛′)).

3) sparse-secret [1], [7], [12]: Transforms the problem
so that the secret is Bernoulli-distributed with 𝜏 < 1

2 instead
of uniform. This reduction does not simplify the LPN problem,
but is necessary for code-reduce.
𝑘 ′ = 𝑘; 𝑛′ = 𝑛 − 𝑘; 𝛿′ = 𝛿; 𝛿′𝑠 = 𝛿; 𝑚 = O (𝑘𝑛)
𝑡=O

(
min𝜒∈N

(
𝑛′𝑘2

log2 𝑘−log2 log2 𝑘
+𝑘2, 𝑘𝑛′d 𝑘

𝜒
e+𝑘3+𝑘 𝜒2𝜒

))
.

4) code-reduce([𝑘, 𝑘 ′] 𝑐𝑜𝑑𝑒) [1], [7], [11]: Uses the
covering property of codes to reduce the LPN problem size.
Using a linear [𝑘, 𝑘 ′] code, code-reduce approximates the
samples to the closest codeword of the code. The effect on
the bias is called bc and depends on the original 𝛿 and the
properties of the code. A bigger bc is better, as it will maximize
the bias of the reduced LPN instance.

Theorem 1: (Upper bound for bc [1]). A [𝑘, 𝑘 ′, 𝐷] linear
code 𝐶 has for any 𝑟 ∈ N and 𝛿𝑠 ∈ [0, 1]:

bc 6 2𝑘′−𝑘
𝑟∑︁

𝑤=0

(
𝑘

𝑤

) (
𝛿𝑤𝑠 − 𝛿𝑟+1𝑠

)
+ 𝛿𝑟+1𝑠 .

Equality for any 𝛿𝑠 implies that 𝐶 is a (quasi-)perfect code, in
which case 𝑟 equals the packing radius 𝑅 = b𝐷−1

2 c.
In [7] the analysis of code-reduce was done for codes that
reach the bound in Theorem 1. This overestimates the efficiency
of the reduction. In practice we know few codes that are close to
the bound and have efficient decoding. Instead, [1] concatenates
small codes that either reach or are close to the bound. We use

Input:A set 𝑉 of 𝑠 𝑘′-bit samples (a, 𝑐) ∈ OLPN
s′,𝜏′ .

Output: (s′1, . . . , s′
𝑘′) from s′

𝑓 (x) = ∑
(a,𝑐)∈𝑉 1𝑉1,...,𝑘′=x (−1)𝑐

𝑓 (x) = ∑
𝑥 (−1) 〈a,x〉 𝑓 (𝑥)

return (s′1, . . . , s′
𝑘′) = arg maxa∈Z𝑘′2

(𝑓 (a))

Figure 2. WHT algorithm [6]

function Gauss(OLPN
s′,𝜏′ , 𝜏

′)
repeat
(A, c) ←

(
OLPN

s′,𝜏′
)𝑘′
such that A is full rank

s′ = A−1c
until Test(s′, 𝜏′, 1

2𝑘 ,
(

1−𝜏′
2

)𝑘
)

return s′
end function
function Test(s′, 𝜏′, 𝛼, 𝛽)

𝑠=

(√︃
3
2 ln(1

𝛼)+
√︃

ln(1
𝛽
)

1
2 −𝜏′

)2

, 𝑐= 𝜏′𝑠+
√︂

3
(

1
2 −𝜏′

)
ln

(
1
𝛼

)
𝑠

(A, c) ←
(
OLPN

s′,𝜏′
)𝑠

return 𝑤𝑡 (As′ + c) 6 𝑐

end function
Figure 3. Gauss algorithm [2]

the same approach. As the modified 𝛿𝑠 is hard to quantify, we
only allow code-reduce to be applied once.
𝑘 = 𝑘 ′; 𝑛′ = 𝑛; 𝛿′ = 𝛿 · bc; 𝑡 = O (𝑘𝑛); 𝑚 = O (𝑘𝑛).

5) 𝑐-sum-Dissection(𝑏): It is possible to sum up more
than just two samples, such that the last bits add up to 0.
This was initially proposed in [13] as LF(4). [9] rephrased it
as a time-memory trade-off for solving LPN problems. They
use the Dissection technique [14] to solve 𝑐-sum problems
in lists of samples. Dissection requires that 𝑐 is one of 𝑐𝑖 ∈{ 1

2
(
𝑖2 + 3𝑖 + 4

)
| 𝑖 ∈ N

}
. The first few 𝑐 are 2, 4, 7, 11. It also

requires that log2 (𝑛/𝑐𝑖) 6 𝑏/𝑖.
𝑘 ′ = 𝑘 − 𝑏; 𝑛′ =

(𝑛
𝑐

)
· 2−𝑏; 𝛿′ = 𝛿𝑐; 𝛿′𝑠 = 𝛿𝑠; 𝑡 = O

(
2𝑐𝑖−1

𝑛
𝑐𝑖

)
;

𝑚 = O (𝑘𝑛).
Note that [8] further improved 𝑐-sum-Dissection by using
the Van Oorschot-Wiener Parallel Collision Search (PCS)
algorithm [15]. We denote this variant as 𝑐-sum-PCS(𝑏).
B. Decoding algorithms
The general algorithm from Figure 1 for solving LPN

reduces LPN𝑛
𝑘,𝜏 to a smaller instance LPN𝑛′

𝑘′,𝜏′ through a
number of reduction steps. It then solves the final instance
using some sort of decoding algorithm. The original BKW
used majority decoding [5]. This was improved by using the
Walsh-Hadamard transform (WHT) [6] and subsequently used
in [1], [7].
𝑡 = 𝑘 ′ · 2𝑘′−1 (log 𝑠 + 1) + 𝑘 ′𝑠; 𝑚 = 𝑘 ′(2𝑘′ + 𝑠).
Esser et al. [2] used the folklore Gauss algorithm that

performs simple Gaussian eliminations using 𝑘 ′ samples,
assuming error-freeness. The obtained candidate s′ is then tested
against 𝑠 samples to determine whether the error’s distribution is
closer to Bin𝑠

𝜏 or Bin𝑠
1
2
. The Pooled-Gauss variant randomly

selects samples from a re-used pool.
𝑡 = (𝑘 ′3 + 𝑘 ′𝑠) · log2 𝑘 ′ · (1 − 𝜏′)−𝑘′ ; 𝑚 = 𝑘 ′(𝑘 ′ + 𝑠).
The two algorithms are given in Figure 2 and Figure 3.

C. Finding the best reduction chain
Bogos et al. proposed in [1] to search for the most efficient

combination of reductions (reduction chain) before decoding

the problem. They present their algorithm as an automaton that
defines all possible reduction paths. They used (concatenated)
perfect, quasi-perfect and random codes for the code-reduce
reduction and failure probability 𝜃 = 0.33. We modify the
algorithm to include the Pooled-Gauss decoding algorithm,
as well as more reduction techniques. We present the updated
automaton in Figure 4.

1initial

2

3 4

decoded

sum-up-reduce

drop-reduce

sum-up-reduce
drop-reduce

sparse-secret

sum-up-reduce
drop-reduce

code-reduce

sum-up-reduce
drop-reduce

WHT

Pooled
Gauss

WHT

Pooled
Gauss

WHT
Pooled
Gauss

WHT

Pooled
Gauss

Figure 4. The automaton accepting valid LPN reduction chains.
sum-up-reduce represents any of the reductions combining samples, i.e.
xor-reduce, lf4-reduce, 𝑐-sum-Dissection or 𝑐-sum-PCS.

IV. Fair Comparison between WHT and Gauss
We revisit both WHT and Gauss and provide a unified

analysis in order to compare them. Our analysis shows that
assuming negligible decoding error 1/2𝑘 , both algorithms
require (almost) the same number of samples. However, their
efficiency depends very differently on the size of the problem
and the bias. As a consequence, they are suitable for different
scenarios. This has several implications.
First, we show that there is no obstacle in obtaining a

negligible error in WHT by choosing an appropriate number of
samples. This was overlooked in [2].
Second, we provide the basis for a fair comparison between

chains of reduction steps ending in Gauss and WHT. As we
will see later, this disproves the claim in [2] that Gauss can
be combined with various reduction steps and give better
results than performing reduction steps and using WHT. This
further explains the experimental results from [2] which
imply that Gauss almost always performs better without any
sum-up-reduce reduction steps.
As a side result, we improve the efficiency of Gauss by

obtaining a better bound for the sample complexity.
Proposition 1: If 𝑠=

(
4

(1−2𝜏)2 −2
)

ln 1√
2𝜋𝛾
samples are avai-

lable, where 𝛾 ∈ (0, 1√
2𝜋𝑒
], the WHT algorithm applied to

LPN𝑛
𝑘,𝜏 outputs the correct solution with probability at least

1 − 𝛾.
Proof: We detail the analysis for a positive bias following

the approach of [1]. For a negative bias, the analysis is
equivalent. WHT outputs the candidate with the largest value of
𝑓 . A failure occurs when there exists another s̄ ≠ s such
that 𝑓 (s̄) > 𝑓 (s) i.e. when HW(As̄ + c) < HW(As + c).
Let ȳ = As̄ + c and y = As + c. Then the expectation and
variance of random variables x𝑖 = y𝑖 − ȳ𝑖 is E(x𝑖) = 2𝜏−1

2 and
Var(x𝑖) = 1

2 −
(2𝜏−1

2
)2. Let 𝑍 =

√
𝑠(𝑆𝑠 − E(x𝑖))/

√︁
Var(x𝑖),

where 𝑆𝑠 =
x1+···+x𝑠

𝑠
. By the Central Limit Theorem 𝑍

𝑑→
𝑁 (0, 1). Using standard upper-tail inequalities for the standard
normal distribution 𝑁 (0, 1), we obtain

𝑃𝑟

[
𝑓 (s̄) > 𝑓 (s)

]
= 𝑃𝑟

[
𝑍 >

(1−2𝜏)
√
𝑠

√
2−(1−2𝜏)2

]
6

𝑒
− (1−2𝜏)2𝑠

2(2−(1−2𝜏)2)
√

2𝜋
(1)

Taking 𝑠=

(
4

(1−2𝜏)2 −2
)

ln 1√
2𝜋𝛾
, inequality (1) becomes

𝑃𝑟

[
𝑓 (s̄) > 𝑓 (s)

]
6 𝛾.

We can make the probability of an error in the WHT procedure
arbitrarily small if we take 𝛾 = negl(𝑘).

Proposition 2: If 𝑠 =

(√︃
2𝜏 (1−𝜏) ln(1√

2𝜋𝛼
)+

√︃
1
2 ln(1√

2𝜋𝛽
)

1
2−𝜏

)2

samples are available for 𝛼, 𝛽 ∈ (0, 1√
2𝜋𝑒
], the Test function

from the Gauss algorithm applied on LPN𝑛
𝑘,𝜏 accepts the correct

solution with probability at least 1 − 𝛼, and rejects incorrect
solutions with probability at least 1 − 𝛽.

Proof: A correct s′ input to the Test algorithm, means
that e = As′ + c follows the Binomial distribution Bin𝑠

𝜏 i.e.
e𝑖 ∼ Ber𝜏 , 𝑖 ∈ {1, . . . , 𝑠}. Then E(e𝑖) = 𝜏 and Var(e𝑖) =
𝜏(1 − 𝜏). Using the same approach as in Proposition 1 for
𝑍 =

√
𝑠 (𝑆𝑠−E(e𝑖))√

Var(e𝑖)
, and 𝑆𝑠 =

e1+···+e𝑠
𝑠
, and we obtain

𝑃𝑟 [HW(As′ + c) > 𝑐] 6 1
√

2𝜋
exp

(
− 1

2𝑠 ·
(𝑐 − 𝑠𝜏)2

𝜏(1 − 𝜏)

)
(2)

Taking 𝑐 = 𝑠𝜏 +
√︃

2𝑠𝜏(1 − 𝜏) ln 1√
2𝜋𝛼

(similarly as in [2]),
Equation (2) turns into 𝑃𝑟 [HW(As′ + c) > 𝑐] 6 𝛼. For the
chosen 𝑐, the probability that a correct s′ will produce an error
e of larger weight than 𝑐 can be made negligible. Therefore
we can use this 𝑐 as a threshold value in the Test algorithm.
We estimate 𝑃𝑟 [HW(As′ + c) 6 𝑐] similarly,

𝑃𝑟 [HW(As′ + c) 6 𝑐] 6 1
√

2𝜋
exp

(
− (𝑠 − 2𝑐)2

2𝑠

)
(3)

Taking 𝑠 =

(√︃
2𝜏 (1−𝜏) ln(1√

2𝜋𝛼
)+

√︃
1
2 ln(1√

2𝜋𝛽
)

1
2−𝜏

)2

and the previously

found 𝑐, Equation (3) turns into 𝑃𝑟 [HW(As′ + c) 6 𝑐] 6 𝛽.
With this we have also estimated the required amount of samples
needed for the Test function.
In order to compare fairly the two decoding algorithms, the

errors 𝛾 for WHT and 𝛼 + 𝛽 for Gauss should be approximately
the same. For simplicity we take 𝛼 = 𝛽 = 𝛾 = 1/(2𝑘

√
2𝜋). Then

we get approximately the same amount of needed samples i.e.

𝑠𝐺 ≈
8𝑘 ln 2
(1 − 2𝜏)2 , 𝑠𝑊𝐻𝑇 ≈

4𝑘 ln 2
(1 − 2𝜏)2

This shows that we can ignore the sample number 𝑠 from
the time and memory expressions of both decoding algorithms
and look at them as functions in 𝑘 ′ and 𝜏′. Interestingly, the
time complexity of both algorithms is exponential in 𝑘 ′, but
with different bases: 2 for WHT and ((1− 𝜏)−1) for Gauss. As
we add more reduction steps, ((1− 𝜏)−1) grows and the Gauss
algorithm quickly overruns WHT. Hence, we can expect that
having more reduction steps favors WHT instead of Gauss as
this reduces the LPN problem, and it becomes more likely that
we can fit the WHT algorithm in memory. This observation is
shown in Figure 5 and further confirmed in Subsection III-C.

V. Combining code-reduce with Gauss
In [2] it was suggested that the low-memory Gauss decoding

algorithms can be combined with various reduction algorithms.
The intuitive combination with the code-reduce reduction
that uses little memory and does not consume any samples,

0 10 20 30 40 50
0

20

40

60

k′

t

tgauss c=0
tWHT c=0

0 10 20 30 40 50
0

20

40

60

80

k′

t

tgauss c=4
tWHT c=4

Figure 5. Comparing WHT and Gauss for different 𝛿′ = 𝛿2𝑐 . 𝑐 indicates
the number of reduction steps.

Input: 𝑛 = 𝑘 + 𝑘2 log2
2 𝑘 + 𝑠 samples from OLPN

s,𝜏 ,
a [𝑘, 𝑘′] code 𝐶 with generator matrix 𝐺
Output: Linear relations on s
sparse-secret()
code-reduce(𝑘, 𝑘′, 𝐶)
𝑠 ← Pooled-Gauss(𝑘′)
return s′ of size 𝑘′ such that s𝐺𝑇 = s′

Figure 6. Coded Pooled Gauss

would appear to make sense. Using Pooled-Gauss, a variant
that does not regenerate samples, this combination looks like
Figure 6. However, we will show that this approach is not more
viable than just applying Pooled-Gauss to the full problem.
Even hypothetical codes that reach the Hamming Bound [16]
don’t have good enough bc that makes Coded (Pooled) Gauss
better.
In our analysis we assume that we can decode a sample

in insignificant time. We explore whether even under this
assumption, Coded Gauss can be competitive. In practice,
constant decoding time is only feasible for (concatenations
of) small codes. Those are not the best possible covering codes
theoretically.

A. Analysis of the required bias of the code
In order for Coded Pooled Gauss to have advantage over

Plain Pooled Gauss, we need the time complexity of Coded
Pooled Gauss to be better, i.e.

(𝑘3 + 𝑘𝑠) log2
2 𝑘

(12 +
1
2𝛿)

𝑘
>
(𝑘 ′3 + 𝑘 ′𝑠) log2

2 𝑘
′

(12 +
1
2𝛿bc)𝑘

′ + 𝑠 + 𝑛. (4)

Recall that Theorem 1 bounds the bc of any [𝑘, 𝑘 ′] code
and that the bound is met for perfect or quasi-perfect codes.
Combining it with the Hamming bound, reached by perfect
codes, (2𝑘′ >

∑𝑅
𝑤=0

(𝑘
𝑤

)
), we can compute the upper bound on

bc for any [𝑘, 𝑘 ′] code. In turn, this gives us the best possible
time complexity for Coded (Pooled) Gauss using any [𝑘, 𝑘 ′]
code. Unfortunately, our calculations show (see Figure 7(a))
that the required bc can not be reached even for codes on the
Hamming bound. This implies that Coded (Pooled) Gauss is
always worse than immediately applying (Pooled) Gauss.
Note that here, since we only combine code-reduce and

Gauss we have 𝛿 = 𝛿𝑠 (the sparse-secret transformation is
performed right before code-reduce). However, in order for
the code-reduce step to be worth applying we actually need
𝛿 < 𝛿𝑠. This corresponds to applying other reduction steps in
between sparse-secret and code-reduce. Figure 7(b) depicts this
scenario. As before, 𝑐 indicates the number of reduction steps.
Note that as 𝑐 increases, so does the possible advantage of
applying code-reduce.
The previous analysis does not give the full picture. We

have neglected the running time of the in-between steps for
the sake of argument and to show that the only favorable case
involves several reduction steps before Coded Gauss.

0 64 128 192 256 320 384 448 512
2−106

2−71

2−36

2−1

k′

b
c

bc at Ham. bound
δ = δs min bc

0 64 128 192 256 320 384 448 512
2−288

2−192

2−96

20

k′

b
c bc at Ham. bound

δ = δ2
c

s min bc (c = 1)

δ = δ2
c

s min bc (c = 2)

δ = δ2
c

s min bc (c = 3)

δ = δ2
c

s min bc (c = 4)

(a) 𝛿 = 𝛿𝑠; 𝜏 = 1
8 (b) 𝛿 = 𝛿2𝑐

𝑠 < 𝛿𝑠 =
3
4

Figure 7. Minimal bc for Coded Gauss to be faster than just applying Gauss
and the bc obtained at the Hamming bound. (b) actually requires additional

reduction steps before code-reduce.

B. Memory Cost
The samples used by Gauss to test if candidate s′ are

correct greatly contributes to its memory consumption. With
small bias, Gauss is not memory-efficient. For quite realistic
𝛿 · bc ≈ 10−6 and 𝑘 ′ ' 16, Gauss needs many terabytes of
memory. When 𝛿 · bc ≈ 10−7, it even crosses into the exabytes.
This further limits realistic attacks. We note that relaxing the
failure probability reduces the memory consumption, though
not by many orders of magnitude. However, this could make
the difference for a practical attack to fit in memory.

VI. Finding memory restricted reduction chains
Our main goal here is to find the best reduction chains

in the spirit of [1] but under memory constraints. As a first
step, we modified the chain finding algorithm from [1] to only
allow branches to be taken if the memory consumed by the
reduction or decoding is below a set limit. Although in theory
this approach should yield the best chain in the end, it is
extremely inefficient, time consuming and does not scale well.
This was especially visible after adding new reduction steps to
the algorithm. However, we noticed that the automaton can be
greatly simplified due to many impossible branches and some
clear optimization steps due to the memory restrictions.

Proposition 3: The sequence sum-up-reduce → drop-
reduce can never occur in the best reduction chain for solving
a given LPN𝑘0 ,𝜏0 search problem under memory constrains.

Proof: We will prove the claim for sum-up-
reduce=xor-reduce. The rest can be shown very similarly.
Suppose that after a number of reduction steps we need to
reduce the problem LPN𝑘,𝜏 . Using the sequence xor-reduce
→ drop-reduce, we can reduce it first to LPN𝑘−𝑏,𝜏′ using
xor-reduce, and then to LPN𝑘′,𝜏′ using drop-reduce. Here
𝜏′ = (1 − (1 − 2𝜏)2)/2 and 𝑏 ∈ [0, 𝑘 − 𝑘 ′]. The sequence
takes time 𝑡 = 𝑘 max{𝑛, 𝑛(𝑛−1)

2𝑏+1 } + (𝑘 − 𝑏) 𝑛(𝑛−1)
2𝑏+1 and memory

𝑚 = max{𝑘𝑛, (𝑘−𝑏) 𝑛(𝑛−1)
2𝑏+1 }. For some constants 𝐴, 𝐵, 𝐶, these

can be written as functions in 𝑏 as 𝑡 (𝑏) = 𝐴 + 𝑛(𝑛 − 1) 𝐵𝑘−𝑏
2𝑏+1

and 𝑚(𝑏) = 𝐴 + 𝐶𝑛(𝑛 − 1) 𝑘−𝑏2𝑏+1 . It is easy to see that both
functions are strictly decreasing in 𝑏, so the minimum on
[0, 𝑘 − 𝑘 ′] is achieved when 𝑏 = 𝑘 − 𝑘 ′. Note further that
the number of remaining samples does not depend on 𝑏, so
the choice of 𝑏 does not affect subsequent reduction steps.
Summarizing, in the best chain any sequence xor-reduce →
drop-reduce collapses to just xor-reduce.
We also looked into the sequences code-reduce →

drop-reduce and code-reduce → sum-up-reduce. How-
ever, due to the very complex relation between the time
complexity and the bias bc of the code, we could not make a
compact analysis similar to Proposition 3. Instead, we performed
an extensive set of experiments where we tested the appearance
of these sequences just before a decoding algorithm is applied,

Table I. Complexities of solving LPN𝑘,𝜏 in restricted memory

k= 128 256 384 512

𝜏 m= 40 60 80 40 60 80 40 60 80 40 60 80

0.05 Our work 26W 26W 26W 38W 38W 38W 58G 49W 49W 68W 58W 58W

Hybrid / MMT 37 34 37 34 37 34 54 40 54 40 54 40 70 48 68 48 68 48 87 57 87 57 84 57

0.10 Our work 31W 31W 31W 50W 46W 46W 81G 60W 60W 99W 92W 73W

Hybrid / MMT 41 38 41 38 41 38 76 53 61 53 61 53 106 70 106 70 74 70 136 87 136 87 101 87

0.125 Our work 33W 33W 33W 56W 49W 49W 92G 71W 64W 114W 105W 78W

Hybrid / MMT 41 41 41 41 41 41 86 61 61 61 61 61 121 81 110 81 81 81 157 102 157 102 101 102

0.25 Our work 38W 38W 38W 102G 58W 58W 140G 92W 77W 179G 186G 115W

Hybrid / MMT 47 57 47 57 47 57 113 95 69 95 69 95 175 134 135 134 104 134 230 172 202 172 171 172

0.40 Our work* 51W 48W 48W 136G 84W 71W 189G 176G 116W 245G 241G 209W

Hybrid / MMT 62 75 57 75 57 75 129 132 93 132 81 132 197 189 160 189 139 189 264 245 228 245 207 245
𝐺 : Gauss decoding method. 𝑊 : WHT decoding method.

Hybrid / MMT per [2], generated by a version of their script that contains a bug-fix acknowledged by the authors. *: 0.40 results do not use random codes from [1].

i.e. sequences of type code-reduce → reduce → decode.
Our experiments showed that such sequences never appear, and
that they collapse to code-reduce → decode. Therefore, we
decided to not allow in the automaton any other reduction steps
after code-reduce.
As a final modification, we put drop-reduce as a first step.

This is a logical choice in a memory restricted environment
and has been used in previous works as well [2]. Samples
can be generated on the fly and discarded immediately if they
don’t satisfy the requirements of drop-reduce. This creates a
time-memory trade-off since only the reduced samples from
drop-reduce remain in memory.
We updated the automaton from Figure 4 using our findings,

and what we get is depicted in Figure 8.

1initial 2

3

4 5

decoded

sum-up-reduce

sum-up-reduce

drop-reduce sparse-secret

sum-up-reduce

code-reduce

WHT

Pooled
Gauss

WHT

Pooled
Gauss WHT

Pooled
Gauss

Figure 8. The updated automaton using the results from Section VI.
The notation is the same as in Figure 4.

A. Experimental Results
We applied our algorithm to find reduction chains that fit in

240 (128 GiB), 260 (128 PiB) and 280 (128 ZiB) bits of memory.
240 bits is an amount of memory that is readily available from
server vendors in common configurations. 260 bits is a much
larger, but not necessarily impractical amount of memory. A
top supercomputer, Summit, has over 250 PB of storage [17].1
Finally, 280 is included to give some safety margin.
In Table I, we show that solving most LPN instances is

fastest using the WHT decoding algorithm. Only when we get
severely memory-restricted, does the algorithm find chains with
Gauss. This improves upon the results of [2], who were not
able to fit any WHT-based algorithm in 260 bits of memory.
We also see that the found reduction and decoding chain is
able to recover LPN256,0.25 in 258 time. This is a significant
improvement on the complexity of 263 for their best attack on
LPN256,0.25, which involved a quantum algorithm. Going up
to 𝑚 = 80 shows that more memory does not necessarily allow
for better algorithms. This is probably related to the fact that

1While this is networked storage, Summit nodes have over 10 PB of local
storage combined. 128 PB of RAM is probably within reach in the near future.

the most significant factor affecting memory requirements is
the number of samples, which in turn affects the required time.

VII. Practical attack on LPN
Using our results, with memory limit 𝑚 = 39, we have

executed several attacks. Results are listed in Table II. We
implemented the reductions and solving algorithms in Rust.2
We hope these results and memory bounds are meaningful and
illustrate what some time complexities mean in practice. We
ran them on a computer with 192 GB RAM and two Intel
Xeon Gold 6230s totaling 80 threads. Their runtime, due to
the tight memory restriction, is dominated by drop-reduce, so
we also give the number of bits dropped.

Table II. Solved LPN𝑘,𝜏 instances with 𝑚 = 39

k τ Exp. time Init. samples drop bits runtime

190 1/8 240.9 231.0 7 33 minutes
200 1/8 244.4 231.2 12 290 minutes
150 1/4 244.5 231.4 12 281 minutes
154 1/4 248.4 231.4 16 3 741 minutes

We see that our results scale in line with the theoretical
complexity. For 𝑘 = 512, we see that for 𝜏 = 1

8 the theoretical
time complexity is 𝑡 = 2114. Extrapolating to this complexity,
we would expect to need 277 minutes to run an attack in practice,
with our implementation. Of course, both extrapolations assume
the exact same hardware and software for attacking a problem
of this size. There is potential for acceleration by using GPUs or
trivially distributing e.g. drop-reduce over multiple computers.
We leave this for future work.

VIII. Conclusion
In this paper we focused on practical consideration for

solving the LPN problem, in particular the issue of memory
consumption. We improved the state-of-the-art by modifying
and enhancing the Coded-BKW algorithm to work under
various memory constraints. Our analysis of Coded (Pooled)
Gauss disproved that this intuitive combination of low-memory
algorithms is generally feasible. We further showed that when
combined with several reduction steps, Gauss is generally al-
ways worse than using WHT, especially for practical parameters.
The practicality of our approach was demonstrated by mounting
attacks on the largest parameters reported so far, in only 239

bits of memory.

2Our software is available at https://thomwiggers.nl/publication/lpn/.

https://thomwiggers.nl/publication/lpn/

References
[1] S. Bogos and S. Vaudenay, “Optimization of LPN solving algorithms,”

in Advances in Cryptology – ASIACRYPT 2016, Part I, ser. Lecture
Notes in Computer Science, J. H. Cheon and T. Takagi, Eds., vol. 10031.
Springer, Heidelberg, Dec. 2016, pp. 703–728.

[2] A. Esser, R. Kübler, and A. May, “LPN decoded,” in Advances in
Cryptology – CRYPTO 2017, Part II, ser. Lecture Notes in Computer
Science, J. Katz and H. Shacham, Eds., vol. 10402. Springer, Heidelberg,
Aug. 2017, pp. 486–514.

[3] O. Regev, “On lattices, learning with errors, random linear codes,
and cryptography,” in 37th Annual ACM Symposium on Theory of
Computing, H. N. Gabow and R. Fagin, Eds. ACM Press, May 2005,
pp. 84–93.

[4] G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, J. Kelsey,
Y.-K. Liu, C. Miller, D. Moody, R. Peralta, R. Perlner, A. Robinson,
and D. Smith-Tone, “Status Report on the Second Round of the
NIST Post-Quantum Cryptography Standardization Process,” National
Institute of Standards and Technology, Tech. Rep. NIST Internal or
Interagency Report (NISTIR) 8309, Jul. 2020. [Online]. Available:
https://csrc.nist.gov/publications/detail/nistir/8309/final

[5] A. Blum, A. Kalai, and H. Wasserman, “Noise-tolerant learning, the
parity problem, and the statistical query model,” in 32nd Annual ACM
Symposium on Theory of Computing. ACM Press, May 2000, pp.
435–440.

[6] É. Levieil and P.-A. Fouque, “An improved LPN algorithm,” in SCN 06:
5th International Conference on Security in Communication Networks,
ser. Lecture Notes in Computer Science, R. D. Prisco and M. Yung,
Eds., vol. 4116. Springer, Heidelberg, Sep. 2006, pp. 348–359.

[7] Q. Guo, T. Johansson, and C. Löndahl, “Solving LPN using covering
codes,” in Advances in Cryptology – ASIACRYPT 2014, Part I, ser.
Lecture Notes in Computer Science, P. Sarkar and T. Iwata, Eds., vol.
8873. Springer, Heidelberg, Dec. 2014, pp. 1–20.

[8] C. Delaplace, A. Esser, and A. May, “Improved low-memory subset sum
and LPN algorithms via multiple collisions,” Cryptology ePrint Archive,
Report 2019/804, 2019, https://eprint.iacr.org/2019/804.

[9] A. Esser, F. Heuer, R. Kübler, A. May, and C. Sohler, “Dissection-BKW,”
in Advances in Cryptology – CRYPTO 2018, Part II, ser. Lecture Notes
in Computer Science, H. Shacham and A. Boldyreva, Eds., vol. 10992.
Springer, Heidelberg, Aug. 2018, pp. 638–666.

[10] A. May, A. Meurer, and E. Thomae, “Decoding random linear codes
in Õ (20.054𝑛) ,” in Advances in Cryptology – ASIACRYPT 2011, ser.
Lecture Notes in Computer Science, D. H. Lee and X. Wang, Eds., vol.
7073. Springer, Heidelberg, Dec. 2011, pp. 107–124.

[11] S. Bogos, F. Tramer, and S. Vaudenay, “On solving LPN using BKW
and variants,” Cryptology ePrint Archive, Report 2015/049, 2015, http:
//eprint.iacr.org/2015/049.

[12] B. Applebaum, D. Cash, C. Peikert, and A. Sahai, “Fast cryptographic
primitives and circular-secure encryption based on hard learning
problems,” in Advances in Cryptology – CRYPTO 2009, ser. Lecture
Notes in Computer Science, S. Halevi, Ed., vol. 5677. Springer,
Heidelberg, Aug. 2009, pp. 595–618.

[13] B. Zhang, L. Jiao, and M. Wang, “Faster algorithms for solving LPN,”
in Advances in Cryptology – EUROCRYPT 2016, Part I, ser. Lecture
Notes in Computer Science, M. Fischlin and J.-S. Coron, Eds., vol. 9665.
Springer, Heidelberg, May 2016, pp. 168–195.

[14] I. Dinur, O. Dunkelman, N. Keller, and A. Shamir, “Efficient dissection
of composite problems, with applications to cryptanalysis, knapsacks,
and combinatorial search problems,” in Advances in Cryptology –
CRYPTO 2012, ser. Lecture Notes in Computer Science, R. Safavi-
Naini and R. Canetti, Eds., vol. 7417. Springer, Heidelberg, Aug. 2012,
pp. 719–740.

[15] P. C. van Oorschot and M. J. Wiener, “Parallel collision search with
cryptanalytic applications,” Journal of Cryptology, vol. 12, no. 1, Jan.
1999, pp. 1–28.

[16] R. W. Hamming, “Error detecting and error correcting codes,” The Bell
System Technical Journal, vol. 29, no. 2, Apr. 1950, pp. 147–160.

[17] Oak Ridge National Laboratory. Summit FAQs. Accessed 2021-
01-25. [Online]. Available: https://www.olcf.ornl.gov/olcf-resources/
compute-systems/summit/summit-faqs/

https://csrc.nist.gov/publications/detail/nistir/8309/final
https://eprint.iacr.org/2019/804
http://eprint.iacr.org/2015/049
http://eprint.iacr.org/2015/049
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/summit-faqs/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/summit-faqs/

	Introduction
	Contributions
	Organization

	Preliminaries
	Solving LPN problems
	Reduction algorithms
	drop-reduce(b)
	xor-reduce(b) SCN:LevFou06
	sparse-secret C:ACPS09,AC:GuoJohLon14,AC:BogVau16
	code-reduce([k, k'] code) AC:GuoJohLon14,AC:BogVau16,EPRINT:BogTraVau15
	c-sum-Dissection(b)

	Decoding algorithms
	Finding the best reduction chain

	Fair Comparison between WHT and Gauss
	Combining code-reduce with Gauss
	Analysis of the required bias of the code
	Memory Cost

	Finding memory restricted reduction chains
	Experimental Results

	Practical attack on LPN
	Conclusion
	References

