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Abstract

Learning Parity with Noise (LPN) is a computational problem that
we can use for cryptographic algorithms. It is suspected that LPN
can not be solved (much) more efficiently on a quantum computer
than on a classic machine. The most time-efficient solving algo-
rithms for LPN use asmuchmemory as they need time. The amount
of memory needed may be a more limiting factor for practical at-
tacks than the time that would be spent.

We propose to improve the theoretical performance of algo-
rithms that use a reduction based on covering codes. By applying
the StGen codes proposed by Samardjiska and Gligoroski, we are
able to create codes that have a better bias. However, we also show
that it is important to consider the time needed to decode such
codes.

We also study the Gauss solving algorithm, proposed by Esser,
Kübler andMay. It does not have the best performance, but it is able
to solveLPNproblemsusing small amountsofmemory. Wecombine
it with the code reduction to obtain a solving algorithmwewill refer
to as Coded Gauss. This combination should not consume too much
memory and provide better performance than Gauss.

Unfortunately, by applying the theoretical bounds of covering
codes, we show that this combination will not work. Coded Gauss
would be a less efficient algorithm than applying Gauss to the full
problem. We also show that there do exist some edge-case scen-
arios where Coded Gauss may still be faster than Gauss, but would
consume about as muchmemory as faster solving algorithms.

Finally, we present a software implementation of algorithms
that reduce and solve LPN problems. This software is easily
adaptable to any attack on an LPN problem to study their behaviour.
We hope that the software is helpful for people trying to understand
the LPN problem and the many proposed algorithms.
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Chapter 1
Introduction
In a world where quantum computers may soon exist, we need new
hardproblems to base cryptographic primitives on. Thediscrete log-
arithm and prime factoring problems underlying RSA [55], the Dif-
fie-Hellman key exchange [22] and Elliptic Curve cryptography [40,
49] can easily (in polynomial time) be broken on a quantum com-
puter using Shor’s algorithm [60]. Much research into alternative,
so called post-quantum cryptographic systems is currently under
way. A post-quantum scheme should survive an attack that utilises
a quantum computer. Wewill be looking at the Learning Parity with
Noise problem [54]. This problem is conjectured to be hard to solve,
even when someone has a quantum computer.

1.1 Post-quantum cryptography
New cryptographic primitives currently being investigated include
code based [46, 50], lattice-based [48], hash-based [20] and mul-
tivariate [23] cryptographic systems. A very recent development is
Supersingular Isogeny Diffie-Hellman key exchange, based on the
conjectured difficulty of finding isogenies between supersingular
elliptic curves [28, 36].

The most prominent example of code-based cryptography is ac-
tually one of the oldest public-key cryptographic systems. McE-
liece published his “Public-Key Cryptosystem based on Algebraic
Coding Theory” in January 1978 [46]. In the same year, RSA was
proposed, which requires much smaller key sizes. It thus did not
receivemuch attention, until in recent yearsMcEliecewas proposed
as a quantum-resistant algorithm. Although it suffers from large
key sizes compared tomanyotherpost-quantumschemes, aversion
was proposed to the NIST Post-Quantum Cryptography Standardiza-
tion project [11]. Many other code-based schemes are also under
consideration [61].

Hash-based signature schemes date back to 1979, when Ralph
Merkle proposed hash-based signatures [47]. In the same year,
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Leslie Lamport proposed Lamport signatures, also based on hash
functions [41]. These schemes rely on the security of the underlying
cryptographic hash function. In recent years, we have seen the
development of XMSS [19] and SPHINCS [12]. Two variants of
SPHINCS, Gravity-SPHINCS [7] and SPHINCS+ [35], were proposed
for the NIST standardisation effort.

Lattice-based cryptographic systems are constructions based
on hard problems in lattices. The first proposal dates back to
1996 [2]. In 1998, the popular NTRU scheme was proposed [33].
Regev proposed Learning With Errors (LWE) in 2005, which was
proved has asymptotically the same hardness as several worst-case
lattice problems [18, 54]. Many proposals to the NIST effort have
been based on either of these two schemes [61].

Multivariate cryptography is based onmultivariate polynomials
over a finite field. The idea and a first cryptographic scheme were
proposed by Matsumoto and Ima at EUROCRYPT 1988 [44]. That
scheme was broken a few years later [51]. However, there has been
muchwork onmultivariate schemes and eleven proposals were sub-
mitted to the NIST effort [61].

1.2 Learning Parity with Noise
In this work we will be looking at a specific problem: the Learning
Parity with Noise (LPN) [54] problem. Regev’s LWE lattice problem
is a generalisation of the LPN problem, which originates from the
field of machine learning. In LWE vectors over the integers modulo
some q are used; for LPN we only consider binary vectors, i.e. q = 2.
However, unlike LWE, LPN does not reduce from hard lattice prob-
lems. Instead, the LPNproblem is closely related to thewell-known,
NP-hard problem of decoding random linear codes [9].

A prominent example of an LPN-based scheme is the HB family
of authenticationprotocols, basedonanoriginal proposal byHopper
and Blum [34]. There exist, amongst others, proposals for LPN-
based encryption schemes [29], message authentication codes [24]
and zero-knowledge proofs [5]. Due to its simplicity, LPN is of-
ten proposed for light-weight applications such as RFID tags [38].
Lepton [66] is a cryptographic scheme based on LPN that was sub-
mitted to the NIST Post-Quantum Cryptography Standardization
project.

In the LPN problem, an attacker has access to an LPN oracle.
This oracle provides them with samples (a, c). Here, c is the noisy
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inner product of random vector a and the secret binary vector s. The
attacker aims to recover s.

If there is no noise, it is possible to quickly recover s. This can
be done by obtaining as many linearly independent samples as the
length of the secret. We then write the samples (a, c) as a matrix
A and a vector c. Gaussian elimination will then give the secret
s. When noise is added the problem becomes much more difficult:
manymore samples and operations are needed.

Current work is focused on asserting the hardness of the LPN
problem by proposing and improving algorithms that solve it.
We should not compare these algorithms just by, for example,
how much time they need. The amount of memory used by an
attack may be prohibitive to its practical usefulness. While a time
requirement of 263 may be within range of a well-funded research
project, needing 263 bits of RAM (an exabyte) is unreasonable. The
well-known Blum-Kalai-Wasserman (subsection 2.3.3) algorithm
is one of the methods that needs about as muchmemory as it needs
time [13].

We can divide most of the algorithms that are applied to LPN
problems into two groups. There are algorithms that reduce the
size of the problem. A smaller problem is easier to solve, but this
often comes at the cost of an increase in the amount of noise. The
other groupof algorithmsare solving algorithms. These take anLPN
problem and produce some information on the secret.

1.3 Our contribution
In ourwork, wewill study algorithms and try to combine algorithms
to solve an LPN problem while using low amounts of memory. In
chapter 2, we will introduce the LPN problem and discuss existing
algorithms that solve it. We will cover the well-known BKW, LF1
and LF2 algorithms [42] and the algorithm built around a reduction
based on covering codes [30]. These algorithms each solve LPN in
subexponential time, but also use enormous amounts of memory.
We will also look at the Gauss [27] algorithm. This approach only
needs polynomial memory to solve an LPN problem. However it
needs exponential time.

The codes reduction, based on covering codes, is strongly
dependent on the code used for the reduction. Perfect codes have
the best properties, but only very few perfect codes are known. In
general, we also only know how to efficiently decode some specific
codes. Random linear codes often have good properties, but if one
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knew how to decode random linear codes, we could also break LPN.
In chapter 3 we look at using Staircase Generator (StGen) [59] codes
to attack LPN, as suggested by Samardjiska [57]. These codes can
be viewed as direct sums of smaller block codes with some random
data added “on top”. This special construction allows to construct
large codes which have a relatively small (average) covering radius.

In chapter 4 we will study combining the Gauss algorithm with
the covering codes reduction. This reduction was proposed by Guo,
Johansson and Löndahl at Asiacrypt 2014 [30]. They originally com-
bined it with a Walsh-Hadamard transform, which requires large
amounts ofmemory. The reduction itself also consumes polynomial
memory, but increases the noise of the problem by a significant
amount. This in turn affects the performance of Gauss. We show
that in most cases, this combination will, unfortunately, not work.
The reduction increases the noise by too much, so much that Gauss
takes too much time.

Chapter 5 considers a combination of reductions by to Bogos and
Vaudenay [16, 17] that solves an LPN problem with k = 512, τ =
1
8 . This reduction uses covering codes and the Walsh-Hadamard
transform. We show that we can improve its performance by using
StGen codes instead of the codes Bogos and Vaudenay used. We
first discuss the StGen code based on the small codes used by the
original attack. We then show that we can construct an StGen code
using small codes, the largest being a [7, 4] Hamming code. This
StGen code decodes orders of magnitude faster than the StGen code
we constructed from the Bogos and Vaudenay random codes, with
similar or better covering.

In chapter 6 we discuss an implementation of the algorithms we
use to solve LPN problems. We hope that the modular structure al-
lows for easy understanding of the various algorithms. The software
should also provide insight into their behaviour. It especially al-
lows toeasily combinedifferent reductionsbefore applyinga solving
method. We designed the software to be suitable and accessible for
anyone. It may be used to study current approaches or implement
new approaches for solving the LPN problem.
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Chapter 2
Learning Parity with Noise
The following notation will be used in this thesis. We will denote
vectors with bold-face letters, like v,u. Matrices are denoted in
capital letters as M or G. The transpose of a matrix is written as
MT . The inner product of two vectors will be written as ⟨v1, v2⟩ . We
may write a size-k vector v as (v1, . . . , vk), where vi is the ith bit of v.

Wewrite Berτ for a Bernoulli distributionwith parameter τ . This
means that if a← Berτ , then Pr[a = 1] = 1− Pr[a = 0] = τ . For the
binomial distribution with n trails and success rate τ , we may write
Binn

τ . We write y U← Y when we uniformly sample y from domain Y .
We will be using the bias of random variables to discuss the ef-

fects of reductions on the noise distribution of an LPN problem.

Definition 1. (Bias). The bias of a random Boolean variable X is
defined as δ = E

(
(−1)X

)
. For Bernoulli X ∼ Berp, then δ =

E ((−1)) = p · (−1)1 + (1− p) · (−1)0 = 1− 2p.

The following lemma describes the effects of adding together
binomially distributed variables.

Lemma 1. (Piling-up Lemma [27]). Let e ∼ Binn
ρ . Then

n∑
i=1

ei ∼ Ber 1
2−

1
2 (1−2ρ)n .

We may also define this in terms of the bias δ. Let n Bernoulli variables
have bias δ. The bias of the sum of n variables is δn.

Finally, we have the following definition which allows to com-
pute tail bounds on the sum of Bernoulli variables.

Definition 2. (Chernoff bound). The Chernoff bound [65] is an in-
equality that give the probability that a certain value might be the
sum of random variables from some probability distribution. The
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Chernoffbound for binomial variablesX ∼ Binm
τ where pm < c < m

is given as

Pr [X ≥ c] ≤ exp
(
c ln

(τm
c

)
+ (m− c) ln

(
(1− τ)m

m− c

))
. (2.1)

2.1 Basic notions of coding theory
We will be discussing tools from coding theory as part of our work
on LPN. Here, we will be covering some of the details needed to
understand the algorithms and their analysis. Codesmay be defined
over many fields, but we will only consider binary codes.

Codes were originally developed to transmit information
through a noisy channel. This noise leads to transmission errors.
To overcome the noise, error correcting codes were proposed [31].
Thesemake communicationmore reliable, by allowing to detect and
even correct errors. The number of errors a certain codemay be able
to correct or detect depends on the type and parameters of the code.

A basic example of an error-correcting code is the repetition code.
It repeats the transmitted bits a given number of times. We decode
the transmitted bit by themajority of the bits. The number of errors
allowed depends on the number of repetitions. Repeating a bit three
times allows to detect and correct at most one error. If there are
two errors, the majority would result in the opposite bit. Repetition
codes are not very efficient, but various other codes exist. For ex-
ample, Hamming Codes [31] allow to detect two errors and correct a
single one.

We let k be the size of the messages and n be the length of the
corresponding codewords. A code is a set of codewords C, a subset
of Zn

2 . A linear code is a code where each linear combination of code-
words is another codeword. Linear codes are often represented by
their generator matrix. This full-rank matrix has dimensions k × n,
and we call C an [n, k] code. k is the dimension of the code, while n
is its length. Multiplying a messagem ∈ Zk

2 by the generator matrix
G gives its codeword c = mG. There may be more efficient ways to
encode amessage for specific codes. Encoding all possible messages
gives the full setC: C =

{
xG | x ∈ Zk

2

}
. The rate of a code is n

k .
It is possible to define an [n, k] code by taking a random k × n

matrix with rank k. However, themost efficient decoding technique
(syndrome decoding) for random binary codes needs Θ

(
2n−k

)
pre-

computation and storage. This quickly makes using large random
codes infeasible. However, random codes often have good proper-
ties.
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The Hamming weight, the number of nonzero bits, of v is
given as HW (v). The Hamming Distance, or simply distance,
between two codewords v and u is the number of bits that are
different. We write this as d(v,u) = HW (v − u). We can write
the distance of a message v to its closest codeword, also known as
the distance to the code, as d(v, C) = min c∈C d(v, c). The minimum
distanceD = minc1∈C,c2∈C,c1 ̸=c2 d(c1, c2) between any two different
codewords is an important property of a code. If known and useful,
the distance D may be included in the notation of an [n, k] code as
[n, k,D]. The covering radius of a code is the radius ρ such that every
element of Zn

2 is at most at distance ρ from the closest codeword.
The packing radius is the largest radius R such that the distance
between two codewords is at least 2R: if we would draw a ball of
radiusR around each codeword, theywouldnot overlap. Thismeans
the packing radius equals R = ⌊D−1

2 ⌋. For a perfect code, there is
exactly one codeword within radius ρ from any element of Zn

2 . The
packing radius equals the covering radius. Quasi-perfect codes have
that ρ = R+ 1.

We may construct an [n1 + n2, k1 + k2] code from an [n1, k1]
linear codewith generatormatrixG1 and an [n2, k2] linear codewith
generatormatrixG2. We let thegeneratormatrixG′ for thenewcode
be the direct sum ofG1 andG2:

G′ =

(
G1 0
0 G2

)
.

2.2 The LPN problem
We follow the definitions of the LPN oracle and Search LPN problem
from [15].

Definition 3. (LPN oracle). Let s U← Fk
2 be the secret of length k and

0 ≤ τ < 1
2 be the constantnoiseparameter. LPNoracleOLPN

s,τ outputs
independent random samples (a, c) from{

(a, c)
∣∣∣ a U← Fk

2 , c = ⟨a, s⟩ + e, e← Berτ
}
.

Definition 4. (Search LPN problem). With access to an LPN oracle
OLPN

s,τ , retrieve theunique secret s. We letLPNk,τ be theLPN instance
where the secret is of size k and the noise parameter is τ . The bias
of LPN problem instance LPNk,τ is δ = 1 − 2τ . An algorithm may
solve the LPN problem LPNk,τ in t time, using atmost n samples and
using at mostm bits of memory. Such an algorithmmay fail with a
certain probability θ.
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Whenconsidering solving algorithms, theparameters of interest
are the number of samplesn, memory usagem and time t. These are
defined in terms of k and τ . This means that k and τ determine the
difficulty of solving a particular LPN problem.

Various public-key encryption schemes use τ = 1√
k
[4, 21, 25,

26]. These low-noise instances need large k, at least 2048. If k
was small, it would be comparatively easy to select enough samples
withoutnoise to recover the secret. That is the approachof theGauss
algorithm [27], which is especially suitable to solving low-noise
problems. We will discuss it in subsection 2.3.6.

Other schemes use constant τ . Examples are the HB protocol
family [32, 34, 37, 39]. These protocols do not need as large k,
depending on the specific noise parameter τ used. The best-known
algorithm to recover the secret in these schemes is BKW [13], which
wewill discuss in subsection 2.3.3. Many improvements on BKW are
known. We will discuss some of the more notable improvements
later in this chapter. These algorithms solve the LPN problem us-
ing 2O(k/ log k) time, memory and samples. As a consequence, even
though they offer the best running time for large τ , it is impossible
to implement. Only toy examples of the LPN problem fit inmemory.

2.3 Solving the LPN problem
In this section we will discuss several of the commonly known algo-
rithms for solving LPN. The algorithms share a common structure,
as described in Algorithm 1. Most can be split in two phases and two
sub-algorithms. In the first phase, the algorithm reduces the size
of the problem by applying some reduction algorithm. Smaller LPN
problems are easier to solve, although the reduction often increases
the level of noise. Then, the secret of the smaller LPN instance is
recovered by using a solving algorithm. Most solving algorithms
recover only part of the secret. However, the algorithm can simply
be repeated to obtain more information. It is always possible to
apply a permutation to the samples. It is easy to see that this also
permutes the secret s. This allows an algorithm that may appear to
only recover the first bits of s, to obtain all bits of the secret.

We will, as in the literature, only discuss the first iteration of
any such algorithm. Recovering the first number of bits is the most
resource-intensive of recovering the full s.

It is possible to apply multiple reduction algorithms before
solving the LPNk′,τ ′ instance. Bogos and Vaudenay proposed
using chains of reduction algorithms before applying a solving

14



Algorithm 1: General LPN solving algorithm

Input: n samples (a, c) from OLPN
s,t , reduction al-

gorithmR, and solving algorithm S
Output: Information on s

1 Apply reduction algorithmR to the samples to obtain a new
LPNk′,τ ′ problem with k′ ≤ k and n′ samples.

2 Use solving algorithm S, consuming n′ samples.
3 return information on s

strategy [16]. We will use the same naming used by Bogos and
Vaudenay throughout this chapter, to allow to easily compare
with their work. We also follow these names in the software
implementation, which is discussed further in chapter 6.

2.3.1 Brute force
There is an obvious way of checking if any s′ ∈ Zk

2 is the correct
secret, by taking a number of samples (a, c) and checking if the inner
product ⟨a, s′⟩ + c ∼ Berτ . Doing this for the entire key spacemeans
we need O

(
2k−1

)
attempts on average. Meanwhile, the algorithm

only needs constant memory. We will see in the sections below,
when considering solving algorithms for LPN, we need to consider
a trade-off between time andmemory.

2.3.2 Shortening samples
A simple modification of the brute force algorithm may be given as
follows. We take samples from the LPN oracle, until we get a sample
(a, c) where only the very first bit, a1, is set. We expect to get such
a sample where a = (1, 0, . . . , 0)with probability 2−k, so we will get
such a sample inO(2k) time and samples. With probability 1−τ , the
first bit of the secret, s1 equals c. We may increase the success rate
by collecting multiple samples and deciding s1 by majority.

We can also phrase this approach as a reduction of an LPN prob-
lem to a smaller LPN problem. We can simply take samples and
throw out all samples where the last z bits are zero. We will on
average get one such sample for every 2z samples we obtain from
the oracle. This reduction requires no additional memory over the
number of samples eventually returned.

In the work of Bogos and Vaudenay this reduction is called
trunc-reduce [16].
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2.3.3 BKW
Extending the idea described above, the Blum-Kalai-Wasserman
(BKW) algorithm [13] is perhaps the best-known algorithm for solv-
ing LPN. Its main part is a reduction that takes pairs of samples of
length k, that share the same bbits at the end. It then collapses those
two samples by adding them together. The resulting sample, like
the example in Figure 2.1, has b zeros bits at the end. By eliminating
those bits, we obtain a sample which represents a smaller LPN prob-
lem with k′ = k − b. But this new LPN problem is noisier, because
we added up the noise embedded in the samples.

k

1 0 0 1 1 10 1 0 1 0 1
⊕ b

0 0 1 1 0 01 0 0 1 0 1

=

1 0 1 0 1 11 1 0 0 0 0
k′

Figure 2.1: The BKW reduction

Wewill nowdescribe thevariant givenbyLevieil andFouque [42].
This algorithm is also given as Algorithm 2. Let a and b be paramet-
ers chosen such that ab = k1. We partition the samples into sets
with the same values on the last b bits. We get at most 2b partitions.
In each partition, we take one of these samples (a′, c′) and replace
all remaining samples (a, c) in the partition by (a + a′, c + c′). They
will also have more noise, because we added up the noise from two
samples. After processing all samples in a partition, we throw (a′, c′)
away. Thatmeans that every roundwe throw away up to 2b samples.
Aftera−1 suchoperations,wepartition all sampleswithHW (a) = 1
into Vi such that ai = 1. Each bit si, 1 ≤ i < b, of the secret is then
decided by taking the majority of the c of all (a, c) ∈ Vi.

By permuting the bits of the input vectors we can obtain other
bits of the secret.

This algorithm recovers b bits of the secret of LPNk,τ , needing
n = 20 · ln(4k) · 2b · (1− 2τ)

−2a samples, kn memory and O(kan)
time [42]. The algorithm may fail with probability θ = 1

2 , using
these parameters.

1Strictly speaking, we need ab ≤ k. We would then retrieve k− (a− 1)b bits in the
end. We use k = ab for simplicity throught this chapter.
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Algorithm 2: The BKW algorithm [13, 42]

Input: A set V of n samples (a, c) fromOLPN
s,t ,

a, b s.t. k ≥ ab
Output: (s1, . . . , sb) from s

1 for i = 1 to a− 1 do
// Reduction (partition-reduce):

2 Partition V = V1 ∪ · · · ∪ V2b s.t. they all have the same bit
values on the last ib bits

3 foreach Vj do
4 Choose a (a′, c′) ∈ Vj

5 Replace all other (a, c) ∈ Vj by (a+ a′, c+ c′)
6 Discard (a′, c′)

// Solving phase (majority):
7 Discard all samples (a, c) from V whereHW (a) ̸= 1
8 Divide V into b partitions, such that vectors a ∈ Vj have

aj = 1
9 for i = 1 to b do
10 si = majority(c), for all (a, c) ∈ Vi

11 return s1, . . . , sb

Asnotedabove, thea−1 applicationsof theBKWreduction throw
out (at most) (a− 1)2b samples. Then, during the solving phase, we
throw out evenmore samples, by only considering the samples with
a single bit set. These two aspects are part of the reason why BKW
needs this many samples to solve the problem.

The reduction and solving algorithms used in BKW are also
known as partition-reduce and majority, respectively, in the
work of Bogos and Vaudenay [15, 16]. Because in each iteration of
the reduction we combine two samples into new samples, the new
bias of the LPN problem is δ2(a−1), per Lemma 1.

2.3.4 LF1
The LF1 algorithm [42] clearly exploits the structure of Algorithm 1.
The algorithm by Levieil and Fouque uses the BKW partition-
reduce reduction. But instead of the majority solving algorithm,
LF1 applies a fast Walsh-Hadamard transform (FWHT) to decide
the secret bits in the solving phase.

We give the formulae for the FWHT in Algorithm 3. A more
friendly formulation is to take the n′ remaining samples (a, c) of the
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reduced LPNk′,τ ′ problem. Then, write these samples as a matrix
and a vector (A, c) and let

f̂(x) = n′ − 2 ·HW (xA+ c).

For the correct x = s, we know sA + c = e. As, when s is correct,
most bits in e are 0, f̂(x) = n′ − 2 ·HW (e)will then be maximal.

Algorithm 3: The LF1 algorithm as presented in [15]

Input: A set V of n samples (a, c) fromOLPN
s,t ,

a, b s.t. k = ab
Output: (s1, . . . , sa) from s

1 Run a− 1 iterations of partition-reduce as in Algorithm 2
// Solving Phase (FWHT):

2 f(x) =
∑

(a,c)∈V 1V1,...,b=x(−1)c

3 f̂(x) =
∑

x (−1)
⟨a,x⟩

f(x)

4 return (s1, . . . , sb) = argmax
a∈Zb

2

(f̂(a))

Because it does not throw away all sampleswith aweight greater
than one, LF1 needs fewer samples than BKW. To recover b bits from
an LPNk,τ problem, LF1 needs n = (8b+ 200) (1− 2τ)

−2a
+(a−1)2b

samples,O(kan+b2b) time and kn+b2bmemory [15, 42]. With these
parameters, it may fail with probability 1

2 .

2.3.5 LF2
In the same paper that introduced the Walsh-Hadamard transform
to solve LPN instances, a variant of theBKWreductionwasproposed.
This variant also partitions all samples into sets that have the same
bit values on certain bits. However, instead of taking one sample
and adding it to all the other samples in each of the partitions, it
considers all combinations of samples in each partition, as shown in
Algorithm 4. This way it may grow the set of samples we took from
the oracle.

Like with BKW, the noise increases. As LF2 adds up two
samples, the bias of the LPN problem is squared for each iteration,
per Lemma 1. This is the same as the change in bias for the
BKW reduction, partition-reduce. But because LF2 generates
new samples, its performance is always better than partition-
reduce [15, 16]. To solve the reduced LPNk′,τ ′ instance, LF2 applies
the same Fast Walsh-Hadamard Transform as LF1.
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The LF2 reduction is referred to as xor-reduce in the work of
Bogos and Vaudenay [16].

Algorithm 4: The LF2 algorithm [42]

Input: A set V of n samples (a, c) fromOLPN
s,t ,

a, b s.t. k = ab
Output: (s1, . . . , sb) from s

1 for i = 1 to a− 1 do
// Reduction (xor-reduce):

2 Partition V = V1 ∪ · · · ∪ V2b s.t. they all have the same bit
values on the last ib bits

3 foreach Vj do
4 V ′

j = ∅
5 for (a, c), (a′, c′) ∈ Vj , (a, c) ̸= (a′, c′) do
6 V ′

j = V ′
j ∪ {(a+ a′, c+ c′)}

7 V = V ′
1 ∪ · · · ∪ V ′

2b

// Solving Phase (FWHT):
8 f(x) =

∑
(a,c)∈V 1V1,...,b=x(−1)c

9 f̂(x) =
∑

x (−1)
⟨a,x⟩

f(x)

10 return (s1, . . . , sb) = argmax(f̂(a))

LF2 solveswith probability 1
2 the LPN search problem for LPNk,τ ,

with k ≤ a ·b, using n = 8 ln
(
2b+1

) (
1
2 −

1
2τ
)−2a

+(a−1)2b samples,
inO

(
kan+ b2b

)
time and consumesm = kn+ b2b memory [15].

2.3.6 Gauss
Gauss is a solving algorithm that only uses polynomialmemory. This
makes it an attractive option compared tomost of the algorithmswe
discussed in the previous sections. However, the time complexity of
Gauss is exponential, unlike theBKW,LF1 andLF2 algorithmswhich
recover s in sub-exponential time. Wewill try to get better perform-
ance by combining Gauss with a polynomial memory reduction in
chapter 4.

Gauss was proposed by Esser, Kübler and May at the 2017
CRYPTO conference [27]. In their paper they suggest extending
Information Set Decoding algorithms, originally developed for
decoding randomcodes, to solving the LPNproblem. The algorithm,
which they called Gauss to emphasise its main technique, is based
on Gaussian elimination. It can be described as follows: take k
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samples (a, c) from the LPN oracle. We represent these samples
in matrix and vector form, such that As + e = c. Then, compute
s′ = A−1c and hope that the error vector ewas all-zero. In that case,
s′ = s. In many ways, this algorithm is similar to the brute-force
approach.

We check if an s′ is the right candidate by first takingm different
samples. We represent these samples as matrix ATest. Then, we
computee′ = ATests′+c. IfHW (e′) is closer to τm than it is to m

2 , it is
likely that e′ ∼ Binm

τ . In that case, s′ is likely equal to s. Algorithm 5
describes the above in a more formal way.

Algorithm 5: The Gauss algorithm [27]
1 Function Gauss(OLPN

s,τ , τ)
2 repeat
3 repeat
4 (A, c)←

(
OLPN

s,τ
)k

5 until A is full rank
6 s′ = A−1c
7 until Test(s′, τ , 1

2k
,
(
1−τ
2

)k)
8 return s′

9 Function Test(s′, τ ,α, β)

10 m =

(√
3
2 ln( 1

α )+
√

ln 1
β

1
2−τ

)2

11 c = τm+
√
3
(
1
2 − τ

)
ln
(
1
α

)
m

12 (A, c)←
(
OLPN

s,τ
)m

13 ifHW (As′ + c) ≤ c then
14 return True
15 else
16 return False

2.3.6.1 Determining the correct solutions
To set the variables m and c, Esser, Kübler and May compute the
tail bounds for the Bernoulli distribution. They use the Chernoff
bound (Definition 2) for binomial variables. They allow us to set
two probabilities α and β. We use them to influence the chance
that, respectively, a correct sample is rejected or incorrect sample
accepted.
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Filling this in the Chernoff bound for the probability that
HW (As′ + c) ∼ Binm

τ is larger than c gives

Pr [HW (As′ + c) ≥ c]
(2.1)
≤ exp

(
−1

3
· τ

1
2 − τ

·
( c

τm
− 1
)2
· τm

)
.

Setting this probability to α, and thus letting us accept s with prob-
ability 1− α gives us

c = τm+

√
3

(
1

2
− τ

)
ln
(
1

α

)
m.

Let the probability that an incorrect solution is accepted be β. For an
incorrect s′ we will get HW (As′ + c) ∼ Binm

1
2
. This means that we

set the upper bound Pr[HW (As′ + c) ≤ c] = β.
Per Chernoff’s inequality we get

Pr [HW (As′ + c) ≤ c]
(2.1)
≤ exp

(
−1

2
·
(
1− 2c

m

)2

· m
2

)
.

Applying the c from above, this last probability equals β, if

m =


√

3
2 ln

(
1
α

)
+
√
ln 1

β

1
2 − τ


2

.

Remark 1. While Algorithm5 shows thatwe takem fresh samples in
the Test function every iteration, we can reuse those samples each
time. Esser, Kübler and May write that in their experiments, this
does not appear to noticeably influence the result shown above.

2.3.6.2 Variants based on decoding random codes
Alongside theGauss algorithmdescribed above, the authors propose
several extensions of this idea. The first one, Pooled Gauss, is a slight
modification of the above algorithm. Instead of taking new samples
from the oracle each time, it takes n = k2 log22 k samples as a pool.
From this pool, it randomly selects sets of k linearly independent
vectors. We then hope that the selection is error-free.

This new algorithm can be viewed as a decoding problem of a
random linear code of size [n, k]. Let the k × n matrix A be the
generator matrix, and c the vector we want to decode to find s. The
Pooled Gauss algorithm then identifies the set of error-free indices
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inA, or the information set. This algorithm is closely related to the
Prange [53] algorithm for decoding random codes.

There exist better Information Set Decoding algorithms than
Gauss. One of these algorithms is MMT [45], which performs
slightly better and may be used instead. MMT does not have a
closed formula for its complexity, however.

Gauss solves the Search LPN problem in I = O
(

log22 k

(1−τ)k

)
itera-

tions. Per iterationwe perform a k×kmatrix inversion and amatrix
multiplication with the k × m matrix in the Test function. This
means we needO

(
(k3 + km)I

)
time. It needsO(k · I +m) samples:

it fetches k new samples per iteration, plus the Test function needs
m samples. Gauss consumesO(k2 + km) bits of memory.

For typical τ , the memory requirements we gave are quite mod-
est. When τ approaches 1

2 ,mmay grow quite large. We also should
point out this algorithm, using the givenα, β, solves a problemwith
negligible failure probability θ. In the previous algorithms we gave
the complexity for θ = 1

2 . However, for the typical τ in LPN prob-
lems,m is only slightly smaller when setting θ = 1

2 . We will clarify
the effects of allowing a higher failure probability and the effects of
θ close to 1

2 in subsubsection 4.1.0.1.
This is an algorithm that only has a solving phase. It is

be possible to combine it with a reduction algorithm such as
partition-reduce or xor-reduce. In fact, the authors already
propose a combination with partition-reduce. They use it to
reduce the size of the problem as a time and memory trade-off.
When combining algorithms with Gauss is important to keep track
of the changes to τ , as those will affect its runtime. In chapter 4 we
will investigate combining this attack with an attack we will discuss
next in subsection 2.3.7.

2.3.7 Covering codes
Proposed at the Asiacrypt 2014 conference by Guo, Johansson and
Löndahl [30], this reduction algorithm uses covering codes to re-
duce the LPN problem size. Covering codes are sets of elements
(codewords) within a space, where all the elements within the space
are within a fixed distance r of some codeword. If we draw spheres
of radius r centred on the codewords, the spheres would cover the
entire space. Linear block codes as discussed in section 2.1 are such
covering codes.

The algorithm reduces a LPN problem without sacrificing
samples. However, applying covering codes does increase the noise

22



0
1
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
01

1
1

1

1 1
1 1
1 1
1 1 1

0 1 0 1 1 0 1
k

k′

Figure 2.2: The covering-codes approach reduces the LPN instance
by decoding samples through a linear code, in this picture a [7, 4]
Hamming code.

of the LPN problem. Solving the reduced LPN problem also no
longer directly retrieves bits of the secret. Instead we will obtain
some linear relations on the secret.

We will give the description of the attack as given in the work of
Bogos, Tramer, and Vaudenay [14, 15, 16]. They pointed out some
crucial flaws in the analysis given in the original work.

The algorithm for the covering-codes reduction is given in Al-
gorithm 6. The reduction step is simply decoding all of the samples
through a covering code C, as illustrated by Figure 2.2. However, to
be able to solve the obtained problem, we need to apply a transform-
ation that changes thedistributionof theLPNsecret. After decoding,
we obtain an LPNk′,τ ′ problem with secret s′. The new noise of the
problem is τ ′, and we will discuss it in subsubsection 2.3.7.2.

Algorithm 6: The covering-codes algorithm

Input: A set of n samples (a, c)OLPN
s,t ,

a [k, k′] codeC with generator matrixG
Output: Linear relations on s
// Preprocessing phase:

1 Change the distribution of the secret (subsubsection 2.3.7.1)
// Reduction phase:

2 Decode each of the a throughC

// Solving phase:
3 Use the fast Walsh-Hadamard transform from LF1
4 return s′ of size k′, such that sGT = s′
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More formally, the covering-codes reduction, using a code with
generator G, outputs a close2 codeword gi = g′iG for all vectors ai,
such that

g′iG+ (ai − gi) = ai.

We can then see that we can write the samples (ai, ci), where we
recall ci = ⟨ai, s⟩ + ei, in the following way:

ci = ⟨ai, s⟩ + ei = ⟨g′iG, s⟩ + ⟨ai − gi, s⟩ + ei

=
⟨
g′i, sG

T
⟩
+ ⟨ai − gi, s⟩ + ei

= ⟨g′i, s′⟩ + e′i.

We obtain the samples (g′i, ci) of a k′-sized LPN problem with
secret s′ = sGT . We see that the new noise bit e′i = ei + ⟨ai − gi, s⟩ .
This naturally influences the distribution of the noise. We will
quantify this effect in subsubsection 2.3.7.2.

2.3.7.1 Changing the distribution of the LPN secret
The secret of the initial LPN instance is chosen uniformly at random.
The covering-codes reduction applies to LPN instances where the
secret has aBernoulli distributionwith τ < 1

2 [5, 15, 16, 30]. Without
the transformation described in this subsection, the bias of the re-
ducedLPNproblemwill be δ = 0 and itwill not be possible to recover
s′.

Wehaven samples (ai, ci) from the LPNoracle. For the reduction
wenowconstruct an invertiblek×kmatrixM as follows. We take the
columns ofM to be a set of linearly independent ai, 1 ≤ i ≤ k. This
allowsus towrite the samples as sM+e′ = c′, where c′ = (c0, . . . , ck)
and e′ = (e0, . . . , ek).

We transform the remaining samples (aj , cj), aj ̸∈M , to obtain a
new LPNk,τ problem with samples (a′j , c′j), where the secret has the
same bias as the LPN problem. The samples of this new problem are

(a′j , c′j) =
(
aj
(
MT

)−1
,
⟨
aj
(
MT

)−1
, c′
⟩
+ cj

)
.

The new secret of this LPN instance is e′ ∼ Bink
τ , as

c′j =
⟨
aj
(
MT

)−1
, c′
⟩
+ cj

=
⟨
aj
(
MT

)−1
, e′
⟩
+ ej

=
⟨
a′j , e

′⟩+ ej .

2Ideally, gi is the closest codeword, but this is not required.
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We set aside the k samples used to construct M , so after this
reduction we have n − k samples left. The bias of the noise in the
LPN problem remains unchanged.

Finally, ifwehave recovered e′ from this sparse LPNproblem,we
can reconstruct the original secret s = (e′ + c′)

(
MT

)−1.

2.3.7.2 The effect of the covering-codes algorithm on the bias
The noise of the samples (g′i, c′i) in the reduced LPN problem is ei +
⟨gi − ai, s⟩ . This means that we obtain a new noise distribution
which depends on the original bias δ and the bias of ⟨gi − ai, s⟩ , bc.
A bigger bc is better, as it will maximise the bias of the new LPN
instance.

The noise increases by the bias of the inner product ⟨gi − ai, s⟩ ,
so

bc = E
(
(−1)⟨ai−gi,s⟩

)
.

Of course, we want to define this without relying on knowledge
of s. We can rewrite the above equation as

bc =
∑

e∈{0,1}k

Pr [ai − gi = e] E
(
(−1)⟨e,s⟩

)
.

This gives us the bias as the sum of all expected values of the inner
products of the possible error vectors and the secret. Because there
is only one vector where e = ai − gi, it is easy to see that this is
correct.

We now replaceE
(
(−1)⟨e,s⟩

)
:

bc =

k∑
w=0

∑
e∈Es(w)

Pr [ai − gi = e] δws ,

where Es(w) =
{
e ∈ {0, 1}k | HW (e) = w

}
. Here, we see that bc is

determined by the distance of ai to the code and by the bias of the
secret. This leads to our conclusion:

bc = E
(
δHW (ai−gi)
s

)
= E

(
δd(ai,C)
s

)
. (2.2)

In [16], the authors showed that perfect and quasi-perfect codes
make bc maximal.

Theorem 1. (Upper bound for bc [16]). A [k, k′, D] linear codeC has

bc ≤ 2k
′−k

r∑
w=0

(
k

w

)(
δws − δr+1

s

)
+ δr+1

s
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for any integer r and δs ∈ [0, 1] the bias of the secret. Equality for any δs
implies thatC is a perfect or quasi-perfect code. Whenwe reach equality
for a perfect or quasi-perfect code, r equals packing radiusR = ⌊D−1

2 ⌋.

Using the equality result, Bogos and Vaudenay get the following
direct formula for quasi-perfect codes:

bc = 2k
′−k

R∑
w=0

(
k

w

)(
δws − δR+1

s

)
+ δR+1

s (2.3)

usingR = ⌊D−1
2 ⌋. For perfect code, they simplify this to

bc = 2k
′−k

R∑
w=0

(
k

w

)
δws . (2.4)

Unfortunately, few perfect binary linear codes exist. Only the
trivial code [k, k]3, repetition codes of odd length, Hamming codes
and the Golay code are perfect. As these codes have fixed sizes, they
are often not suitable for our purposes. As all known quasi-perfect
codes are constructed from perfect codes, we only know a fewmore
of them. Crucially, we do not know how to generate arbitrary-sized
codes that reach the bound.

For large n it is known that random codes approach the Ham-
ming bound. Unfortunately, we do not know how to decode large
randomcodes efficiently. Instead,wemayuse smaller codes to com-
pose larger codes, for instance by taking their direct sum. This gives
us a [k, n] code where n is the sum of the dimensions of the smaller
codes, and k the sum of their lengths. The bc of such a concatenated
code is defined as the product of the bc of the smaller codes [16]. Vec-
tors encoded by these kinds of codes can easily be decoded, by just
decoding all the parts of the secret individually through the smaller
codes.

We should note that the covering-codes reduction affects the
bias δs of the distribution of the secret in some unspecified way [16].
This reduction should thus not be applied multiple times.

3The trivial code [k, k] is also the only code where bc = 1, as d(a, C) = 0.
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Chapter 3
Staircase Generator codes
Samardjiska and Gligoroski proposed Staircase Generator (StGen)
Codes to construct large linear codes with a small covering ra-
dius [59]. StGen codes are an extension of the direct sum of codes.
In (3.1) we show the structure of an StGen code. Each of the Bi is a
ki × ni binary matrix such that (Iki |Bi) forms a [ki + ni, ki] linear
code. TheB′

i are random
(∑i−1

i=1 ki

)
× ni binary matrices.

Of course, constructing large linear codes is easy. So we should
now explain how to efficiently decode these large codes. To this end,
we use a technique from [58, 59]. It is based on list decoding of the
smaller codes. We will just try to find a close codeword, instead of
the closest code word. Finding close codewords is sufficient for our
purposes: we are mostly interested in the covering.

G = Ik

B1k1 B′
2

B2k2

n2

. . .. . . B′
v

Bvkv
0





n1

nv

(3.1)

3.1 Decoding StGen codes
We present the list-decoding algorithm from [59] in Algorithm 7.
The follow-up paper [58] presents a more efficient version. How-
ever, this version is highly specific to repetition codes. The more
general algorithm allows for more variation in the choice of codes
and combinations of codes.
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Algorithm 7: List-decoding StGen codes [59]
Input: Starting weightw1, round weight limitwb, round

weight incrementwinc, generator matrixG,
maximum list size Lmax, vector c ∈ Fn

2 .
Output: A close codeword of c
LetKi = Σi

j=1kj ,Ni = Σi
j=1nj and letGi be the

‘small code’ (Iki |Bi).
1 L0 = {(x0, e0)}, x0, e0 are zero-dimensional vectors.
2 for i = 1 to v do
3 foreach (xi−1, ei−1) inLi−1 do
4 b =

(
cKi−1 , . . . , cKi

)
||
(
xi−1B

′
i +
(
ck+Ni−1

, . . . , ck+Ni

))
5 max-wt =min(wi −HW (ei−1), wb)

6 foreach e′ ∈
{
v ∈ Fni+ki

2 | HW (v) ≤ max-wt
}
do

7 Find x′ s.t. x′Gi + b = e′

8 enew =

(
(ei−1)1, . . . , (ei−1)Ki−1

, e′1, . . . , e′ki
,

(ei−1)Ki−1
, . . . , (ei−1)Ki−1+Ni−1

, e′ki
, . . . , e′ki+ni

)
9 Add (xi−1||x′, enew) to Li

10 if |Li| < Lmax thenwi+1 = wi + winc elsewi+1 = wi

11 return x from (x, e) ∈ Lv whereHW (e) is minimal

Thealgorithmiterativelydecodes the inputusing the ‘small’ codes.
All the while, we are taking the randomB′

i parts of the code’s gener-
ator matrix into account. This is why we construct b by first taking
the pieces of c that align with the part of I and Bi corresponding
to Gi. We then add in the product of the previous xi−1 and B′

i to
account for the effect of the random code. After that, we try to find
all possible x′ and corresponding error vectors e′. To not generate
2ki+ni candidates, we bound the e′ by the Hamming weight. The
total Hamming weight of the collected error vectors is bound by a
round weight limitwi. We increase thewi only when we do not have
more than Lmax tuples in Li. How much we increase wi is set by
winc. Controlling wi allows us to generate fewer tuples in the next
iteration,whenwehavemore thanLmax tuples. Tupleswill also drop
out in each round, as theywill not produce suitable (x′, e′)within the
weight limits. After v iterations, Lv will contain tuples (x, e) where
xG+e = c. We select the tuplewhere e is the lowest, as that solution
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minimisesHW (c− xG) and thus yields the closest found codeword.
It is not necessarily the closest codeword; we may have thrown that
codeword out. For example, itmay have hadmore thanw1 error bits
set while we processedB1.

The time complexity of the decoding algorithm is

O

(
vLmax

wb∑
h=0

(max
0≤i≤v

(ni + ki)

h

))
.

The amount of memory consumed isO(kLmax).

3.2 Selecting parameters for StGen codes
The performance of the algorithm is highly tunable by setting the
Lmax, w1, winc and wb parameters. These affect the average covering
radius of the found codewords. We define the average covering ra-
dius R̃ of a linear binary codeC as

R̃ = 2−n
∑
c∈C

d(v, C).

Obviously, if w1 is larger, the list L1 generated in the first iter-
ation will be larger. If Lmax, winc or wb are larger, we allow Li to
grow more as we will admit more tuples. This will allow us to find
the closest codewordmoreoften, at the expense of increased storage
and time requirements. If theseparameters are set too tight,wemay
fail to find any codeword.

It is often desirable to balance runtime performance with the av-
erage covering radius obtained. To choose suitable parameters, one
may have to try out certain values and combinations of those values
for the parameters.

3.3 Selecting codes to construct StGen codes
We can use any combination of linear binary codes to construct St-
Gen codes. However, it is often preferable to pick codes with a small
length, for example n < 10. For a larger code, w1, wb and winc need
to be larger, otherwise we may fail to decode. As the number of it-
erations of the inner loop isO(

∑wi

h=0

(
ni+ki

h

)
), the largerwi may get,

the worse the performance of decoding.
Perfect codes or small random codes are natural candidates to

select for StGen codes. The [7, 4] Hamming code, [3, 1] repetition
codes and [5, 1] repetition codes are very suitable for constructing
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StGen codes of various sizes and rates. To construct some sizes of
codes, it may be desirable to add [1, 1] codes or quasi-perfect codes
like a [4, 1] repetition code to the selection of small codes.

As with the parameters for decoding, the selection of codes will
affect the covering properties of the StGen codes. It again may be
worthwhile to consider different selections to find a combination
with suitable characteristics.
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Chapter 4
Combining covering codes with
Gauss
Most of the algorithms we described in chapter 2 consume enorm-
ous amount of memory. The exceptions are Gauss and the covering-
codes reduction. In this chapter wewill investigate combining these
two algorithms, as described in Algorithms 8 and 9.

Algorithm 8: Coded Gauss

Input: n samples (a, c) fromOLPN
s,t , a [k, k′] codeC with

generator matrixG
Output: Linear relations on s

1 Change the distribution of the secret
2 Decode each of the a throughC
3 Recover s′ using Gauss (Algorithm 5)
4 return s′ of size k′ such that sGT = s′

Algorithm 9: Coded Pooled Gauss

Input: k
2 log22 k +m samples (a, c) fromOLPN

s,t , a [k, k′]
codeC with generator matrixG

Output: Linear relations on s
1 Change the distribution of the secret
2 Decode each of the a throughC
3 Recover s′ using Pooled Gauss
4 return s′ of size k′ such that sGT = s′

Gauss’s time complexity greatly depends on how large the noise
of the LPN instance is. If the noise is larger, the time complexity
greatly increases. We need to find large, suitable codes for our re-
duction, with a bc as large as possible.
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Remark 2. Wewill assume thatwe candecode a sample inO(1) time.
This is the case when decoding is based on look-up tables. However,
look-up tables are not suitable for all codes. We may incur quite
significant constant factors when applying different codes. We will
see clear examples of large differences when we discuss different
StGen codes in section 5.3. While this is something that could have
a large impact on practical attacks, it is difficult to capture in the
theoretical complexity analysis.

4.1 Efficiency of the combined attack
The Gauss attack needs O

(
log22 k

(1−τ)k

)
= O

(
log22 k

( 1
2+

1
2 δ)

k

)
iterations be-

fore we expect to find an error-free sample. Applying the covering
codes attack using a [k, k′] code increases the noise, but decreases
the problem size. It sets δ′ = δ ·bc. We also need to factor in the time
needed to process the k′ samples used in each iteration of Gauss. We

alsoneed todecode them =

(√
3
2 ln( 1

α )+
√

ln 1
β

1
2 δbc

)2

samples thatGauss

needs for the Test function.1 Adding this up, the time complexity of
Coded Gauss is

O


(
k′

3
+ k′m

)
log22 k

′(
1
2 + 1

2δbc
)k′ + k′

(
log22 k

′(
1
2 + 1

2δbc
)k′

)
+m

 .

Pooled Gauss takes a pool of samples to draw from instead of taking
k′ new samples per iteration. For our reduced k′-sized LPNproblem,
this pool has n = k′ log2 k

′ samples. This leads to a time complexity
of Coded Pooled Gauss of

O


(
k′

3
+ k′m

)
log22 k

′(
1
2 + 1

2δbc
)k′ +m+ n

 .

Clearly, bc should be as large as possible to minimise the time
lost by the noise increase. Specifically, bc should be large enough
such that we still benefit from the smaller k′ < k. For Coded Pooled

1For now, we will be using the values of α and β that give a negligible chance of
failure.
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Gauss, this is true whenever the following inequality holds:(
k3 + km

)
log22 k(

1
2 + 1

2δ
)k ≥

(
k′

3
+ k′m

)
log22 k

′(
1
2 + 1

2δbc
)k′ +m+ n. (4.1)

For given k, k′ and τ , we canwork out theminimum bc for Coded
(Pooled) Gauss to be faster than directly applying Gauss to the full
k-sized LPN problem. In Figure 4.1a we show the lower bound for bc
that satisfy the inequality given k = 512 and τ = 1

8 .
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Coded Gauss
is faster

Plain Gauss is faster

(a) Lower bound for bc
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Coded Gauss
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(b) More detailed look at 0 < k′ ≤
128.

Figure 4.1: Minimal bc before Coded Gauss is faster than applying
Gauss to the full problem.

Where 0 < k′ ⪅ 100, we see that the minimal bc for Coded Gauss
to be faster is very small. Figure 4.1b shows this section on a loga-
rithmic scale. We also show some values for various k′ in Table 4.1.
Where k′ ⪆ 100, the complexity is most affected by the number of
iterations needed. Where k′ is smaller, the number of iterations gets
to be always smaller than the number of iterations of Gauss on the
full problem, even when bc = 0 and thus δ = 0. This causes the
factorm to take over: for very small bc,m gets quite large.

4.1.0.1 Memory usage
Weshouldnote thathaving largemmeans thatwe require largeamounts
of memory for Coded Gauss. The memory requirements of Coded
Gauss are the same as for Gauss. However, in Coded Gauss we are
working with noise levels τ much closer to 1

2 . As a result we require
manymore samples for theTest function. Thismeans thatmaffects
Coded Gauss’s memory usage much more than in typical applica-
tions of Gauss.
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Table 4.1: For k′ ⪅ 100, the lower bound for bc decreases greatly as
m determines the total complexity. This is most clear in the rows
where k′ = 40. Complexities are given in log2, τ = 1

8 .

Algorithm k′ log10 bc Iterations m Total

Gauss 512 105.0 132.0
Coded Gauss 110 −1 104.0 18.5 129.4
Coded Gauss 81 −2 85.5 24.7 116.5
Coded Gauss 81 −4 86.3 38.0 130.6
Coded Gauss 40 −4 44.8 37.0 87.1
Coded Gauss 40 −10 44.8 76.0 127.0

Thememory complexity of Coded Gauss in bits is

O (k′(m+ k′)) = O

k′


√

3
2 ln

(
1
α

)
+
√
ln 1

β

1
2δbc


2

+ k′2

 .

Setting δ = 3
4 , we plot m for various bc in Figure 4.2. For quite

realistic bc = 10−6, we quickly need many terabytes of memory.
Where bc = 10−7, we even cross into the exabytes. This further
limits realistic attacks.
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Figure 4.2: m for various small bc (δ = 3
4 ).
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Wecan slightly reducememoryusage ifwe relax the failure prob-
ability θ. So far, we have been using α = 1

2k′ and β =
(
1−τ
2

)k′

.
These values give θ = negl(k′). We can instead set α = θ and β =(
1−τ
2

)(1−θ)k′

. This will give us a success probability of approxim-
ately 1 − θ. We show different θ in Figure 4.3. Allowing a higher
failure probability does not reduce the memory usage by orders of
magnitude. However, it could make the difference in allowing an
attack to fit in memory.
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m
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Figure 4.3: m for various θ (δ = 3
4 · 10

−5)

4.2 Performance with perfect codes
In subsection 2.3.7 we discussed that perfect codes give the best bc.
Recall Theorem 1 which bounds the bc of any [k, k′, D] code by

bc ≤ 2k
′−k

R∑
w=0

(
k

w

)(
δws − δR+1

s

)
+ δR+1

s .

HereR =
⌊
D−1
2

⌋
, the packing radius. When the bound ismet for any

δs ∈ [0, 1], the code is perfect or quasi-perfect.
The Hamming bound [31] or sphere-packing bound states the

maximum number of codewords for a [k, k′, D] code, given k andD,
as

2k
′
≥

R∑
w=0

(
k

w

)
. (4.2)
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For a perfect code, equality holds: perfect codesmeet the Hamming
bound.

We take the largestD such that (4.2) is still true for given [k, k′].
We can then see that if a [k, k′, D] code exists, it makes bc maximal.
This allows us to compute the best theoretically possible bc for any
[k, k′] code. In turn, this will give us the best possible time complex-
ity for any attack of Coded (Pooled) Gauss using any [k, k′] code.
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Figure 4.4: Minimal bc and the bc obtained at the Hamming bound
for various τ . k = 512, δ = δs = 1− 2τ .

Unfortunately, Figure 4.4 shows that [k, k′, D] codes at the Ham-
ming bound do not appear to give good enough bc when the bias
of the secret is equal to the bias of the LPN problem, i.e. δs = δ.
This is the case when we apply the sparse-secret reduction imme-
diately before we apply the covering codes reduction. The values of
bc obtained at the Hamming bound are very small. As a result the
noise of the reduced LPNk′,τ ′ problem is so large that the combined
algorithm is slower than applyingGauss to the original LPNk,τ prob-
lem. In the next section, we will examine the case where δs ̸= δ.
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4.2.1 When the bias of the secret is larger than the bias
of the noise

So far we have assumed that we apply the sparse-secret transform-
ation and the code reduction in sequence, such that δ = δs. It is pos-
sible to first do the transformation and follow it by other reductions
of the LPN problem. This will make the bias of the LPN problem δ
smaller, but the bias of the secret δs will remain unchanged.

When δs ̸= δ and δ is small, we observe that there exist values
of bc at the Hamming bound that may work for Coded Gauss. We
may get those examples where a number of reductions are applied
after the sparse-secret transformation. Figure 4.5 shows examples
of LPN problems with various δ ≤ δs. For the small δ, we obtain val-
ues for bc at the Hamming bound that are larger than theminimum
required for Coded Gauss to be faster.
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Figure 4.5: Minimal bc for various δ and the bc obtained at the Ham-
ming bound with δs =

3
4 . k = 512.
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However, as we saw in subsubsection 4.1.0.1, when δ is small we
often need extreme amounts ofmemory for them samples required
for the Test function. We are also not accounting for the reduction
that has been applied to obtain the suitable LPN instance. It is pos-
sible that the reduction takes more time than would be saved by not
applying Gauss to the full problem.

We can not apply many different combinations of algorithms in
this thesis. It should be possible, however, to compute a combina-
tion thatworks. Bogos andVaudenay computed chains of reductions
in [16]. We will discuss the chain they proposed to solve LPN with
k = 512 and τ = 1

8 in chapter 5. That algorithm uses the code
reduction and the FWHT. We will look at replacing either or both
with Gauss.

We point out that Bogos and Vaudenay only considered runtime
performance when computing their reductions. It should however
be possible to adjust the algorithm that finds reductions to also ac-
count for memory consumption and we will consider this for future
work.

In many of the cases where we need extreme amounts of mem-
ory, the fast Walsh-Hadamard Transform may use less memory or
only small factormorememory thanGauss’sTest function. TheFWHT
is much faster than applying Gauss, so in those cases Coded Gauss
does not seem very fruitful. In subsection 5.3.2 we will see such an
example where Coded Gauss is indeed faster, but the memory con-
sumption is as prohibitive as applying the Walsh-Hadamard trans-
form.
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Chapter 5
Improving LPN solving algorithms
In [16], Bogos and Vaudenay (theoretically) solve an LPN problem
with k = 512 and τ = 1

8 . They needed O(278.85) time and O(267.6)
samples for the attack. We will now discuss how the StGen codes
fare if we use them for the covering-codes step.

5.1 Bogos and Vaudenay's solving chain for LPN512,18
As the first step of a solving algorithm dominates the run time, we
will limit our analysis to it.

The first step of the algorithm is listed in Table 5.1. We added
to our table the values of the bias δ and bias of the secret δs. As
usual, k is the size of the LPN problem at each point, while n gives
the number of samples.

Table 5.1: The full solving chain of Bogos and Vaudenay [16, 17] on
LPN512, 18

. In step 7 they apply a [189, 64] covering code with bc =

8.78 · 10−6.

Step k log2 n δ δs Algorithm

1 512 63.3 0.75 0 sparse-secret
2 512 63.3 0.75 0.75 xor-reduce (b = 59)
3 453 66.6 0.5625 0.75 xor-reduce (b = 65)
4 388 67.2 0.3164 0.75 xor-reduce (b = 66)
5 322 67.4 0.1001 0.75 xor-reduce (b = 66)
6 256 67.8 0.0100 0.75 xor-reduce (b = 67)
7 189 67.6 0.0001 0.75 covering-codes
8 64 67.6 8.8 · 10−10 FWHT

Bogos and Vaudenay claim to needO(278.85) time to perform this
algorithm. If we use the formulae given in chapter 2, we get a com-
plexity that is slightly larger. Specifically, we get O(279.7). It turns
out that Bogos and Vaudenay estimate the complexity of the sparse-
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Table 5.2: bc for the small random codes used in the solving al-
gorithm for LPN512, 18

[16, 17].

Code bc
(
τ = 1

8

)
[18, 6] 0.323782920837402
[19, 6] 0.291754990816116
[19, 7] 0.336303114891052

secret reduction using theminimal complexity of two different algo-
rithms. It turns out they donot just apply Bernstein’s algorithm [10]
as mentioned in their paper. They also compute the complexity us-
ing the Method of the Four Russians [1, 3, 6]. In some cases that
approach gives a lower complexity. Additionally, the complexities
computedby their softwareusea log-tworepresentation, losingsome
precision. Using the complexity of the Four Russians algorithm and
computing with full precision, we get a complexity ofO(278.87). We
also use n = 4 ln

(
2k

′

θ

)
δ′−2 = 267.7 samples for the last iteration.

There, δ′ =
(
3
4

)25bc and θ = 1
3 .

5.2 Computing the bc for random codes
We saw that for prefect and quasi-perfect codes, bc can be directly
computed. For concatenated codes, we are able to compute bc as the
product of the bc of the smaller codes. Unfortunately, formost codes
we do not have such convenient means.

For the definition of bc of a codeC, we recall Equation (2.2):

bc = E
(
δd(ai,C)
s

)
.

For an [n,m] code this means computing

bc = 2−n
∑
ai∈Fn

2

δHW (gi−ai)
s ,

where gi is the codeword obtained by decoding ai.
Bogos and Vaudenay use three different random linear codes as

building blocks for a concatenated code. These codes were an [18, 6]
code, a [19, 6] code and a [19, 7] code. They computed the exact bias
of these small codes by decoding all possible vectors. We give the
biases of these codes in Table 5.2.
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Clearly, this quickly becomes intractable for larger codes. This
means we will need to estimate bc. Algorithm 10 shows how we do
this. We take anumber of randomvectors, and compute the distance
of those vectors to the code. We then compute δs to thepower of each
of these distances and take the average.

We estimated the bc of the StGen codes based on the Bogos and
Vaudenay random codes by taking the average of a 1000 vectors. Ex-
periments show that for 1000 vectors, these estimates are already
reasonably accurate.

Algorithm 10: Estimating bc

Input: Bias of the secret δs, the number of trails n,
[k, k′] codeC

Output: An estimation of bc
1 acc = 0
2 for i = 1 to n do
3 v U← Zk

2

4 c = decode(C, v)
5 acc = acc+ δ

HW (c−v)
s

6 return acc
n

5.3 Improving the codes in Bogos and Vaude-
nay's solving chain

In their algorithm, Bogos and Vaudenay used the concatenation of a
single [18, 6] code, five [19, 6] codes and four [19, 7] codes. The direct
sum of these codes results in a [189, 64] code with bc = 8.78 · 10−6.
As stated before, we directly computed the bc for this code as the
product of the bc of the smaller codes.

We can directly instantiate StGen codes using the same sequence
of small codes. As the decoding algorithm is highly tweakable, we
need to choose the StGen parameters Lmax, w1, wb and winc. Per the
bias estimationmethod described in the previous section, we get the
results from Table 5.3. Choosing higher values for the StGen para-
meters gets better results, but increases decoding time. We give the
average time needed to decode a randomvector to give an indication
of the differences in performance. We computed the timing results
on a standard Dell XPS 13 laptop with an Intel i5–6200U dual-core
CPUwith hyperthreading. The original concatenated code decodes a
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vector by splitting it and decoding all parts separately. We decoded
the concatenated code in an average of 0.02milliseconds.

Table 5.3: bc for [189, 64] StGen codes instantiated using the random
codes of the Bogos and Vaudenay algorithm.

w1 Lmax wb winc bc (·10−5)

Time
(1000
ms/decode)

Variance
(seconds)

8 600 9 9 3.8 500 ±316
8 600 10 9 3.8 385 ±441
8 600 11 9 3.9 488 ±307
8 600 12 8 3.7 308 ±199
8 600 12 9 3.8 486 ±298
8 800 9 8 3.9 746 ±349
8 800 9 9 3.9 567 ±936
8 800 10 7 3.8 394 ±235
8 800 10 8 3.8 382 ±741
8 800 10 9 4.0 741 ±636

We should point out that StGen codes performquite poorlywhen
the “small codes”Bi are large. For the codes above, we need to con-
sider O

(
Lmax ·

(
19
wb

))
possible error vectors in each iteration. This

is quite a substantial number, and this leads to the long decoding
times.

We will compute the complexity using the StGen code withw1 =
8, Lmax = 600, wb = 9 and winc = 9. This code has bc = 3.8 · 10−5.
We need 263.2 samples to solve the LPN problem,O(278.1) time. The
algorithm consumesO(276)memory.

5.3.1 Constructing new StGen Codes
We can also construct StGen codes by using small perfect and quasi-
perfect codes. We construct a [189, 64] code by taking a single [1, 1]
code, fifty [3, 1] repetition codes, one [4, 1] repetition code, four [5, 1]
repetition codes and two [7, 4]Hamming codes. Table 5.4 shows the
decoding time and estimations of bc for various settings of the para-
meters. As these codes decode an order of magnitude quicker, we
estimated the bc by decoding 100 000 vectors. For comparison, the
concatenated code obtained by the direct sum of the small codes lis-
ted abovehas bc = 2.4·10−6 anddecodes randomvectors in 0.009ms.
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Table 5.4: [189, 64] StGen codes instantiated using small perfect and
quasi-perfect codes.

w1 Lmax wb winc bc (·10−5)
Time
(ms/decode)

Variance

1 200 2 1 3.6 20.5 ±1.0
1 200 2 2 3.8 28.0 ±1.4
1 200 4 1 3.7 21.1 ±1.1
1 200 4 2 4.2 29.8 ±3.2
1 800 2 1 3.8 77.7 ±5.1
1 800 2 2 4.1 112.4 ±5.3
1 800 4 1 4.0 80.3 ±4.3
1 800 4 2 4.5 117.7 ±12.2
2 200 2 1 3.6 20.6 ±1.9
2 200 2 2 3.9 28.3 ±1.9
2 200 4 1 3.7 21.1 ±1.2
2 200 4 2 4.2 29.6 ±1.9
2 800 2 1 3.7 78.5 ±8.4
2 800 2 2 4.2 116.8 ±19.1
2 800 4 1 4.0 81.0 ±5.3
2 800 4 2 4.5 119.3 ±12.0
3 200 2 1 3.6 22.9 ±5.0
3 200 2 2 3.8 28.7 ±3.9
3 200 4 1 3.7 21.3 ±7.5
3 200 4 2 4.1 31.0 ±4.1
3 800 2 1 3.8 77.4 ±4.8
3 800 2 2 4.2 112.4 ±6.7
3 800 4 1 4.0 80.5 ±4.7
3 800 4 2 4.6 118.0 ±13.0
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The StGen code with w1 = 1, Lmax = 200, wb = 2 and winc = 1
has bc = 3.6 · 10−5. This gives us the same results as above: a time
complexity of O

(
278.1

)
, while using 263.2 samples. The algorithm

consumes at mostO
(
276
)
memory.

A note on decoding time

Although our implementation of StGen is not by any means
slow, we are still far from the best possible performance. If
we were planning to really solve a specific LPN problem, we
would first spend more time on selecting the best paramet-
ers and small codes for the StGen code. We would then fix
that specific code. Knowing the exact code allows for many
optimisations. When the parameters are fixed, we could dir-
ectly implement thematrix multiplication instead of using a
genericmatrixmultiplication algorithm. Thiswould allow to
eliminate operations that have no effect, such as an xor with
a zero bit. We might even look into optimisations that allow
for reuse of intermediate results of vector-matrix products.
The latter is something we discussed in [64, Section 3.2] in
the context of a symmetric cipher.

5.3.2 Applying Gauss to the Bogos and Vaudenay algorithm
Pooled Gauss, in most cases, requires fewer samples to solve a LPN
problem than the Walsh-Hadamard transform. We discussed the
efficiency of Coded (Pooled) Gauss in section 4.1. This section serves
to illustrate the results we obtained.

Our results suggest that Pooled Gauss is, for most k, k′ and τ ,
faster than Coded Pooled Gauss. We take the Bogos and Vaudenay
algorithm chain, but replace covering-codes and FWHT by Pooled
Gauss. This last step is trying to solve an LPN problemwith k = 189

and δ =
(
3
4

)25 . PooledGaussneeds onlyO(238.4)queries to solve this
LPN problem. However, it takes O(2240) time. The memory com-
plexity is O(274), the memory complexity of the first application of
xor-reduce.

If we apply Coded Pooled Gauss, so we only replace FWHT
by Pooled Gauss, we obtain a runtime complexity of O(2145.6).
This is a much faster approach than the solving chain without
covering-codes, butweneedO(270) samples andO(278.4)memory.
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The reason is simple: because δ ≈ 10−10, the number of queries
needed for the Gauss Test algorithm is enormous.

In conclusion, while this chain presents one of the edge cases
where Coded (Pooled) Gauss is faster than applying (Pooled) Gauss
without the covering-codes reduction, it is not worthwhile. The
memory consumption and number of samples requiredwhen apply-
ing Gauss in these edge cases approach or exceed the requirements
for theWalsh-Hadamard transform. Thatmeans there is no advant-
age when using Gauss: the Walsh-Hadamard transform is so much
faster, that it will be worth any small additional amount of memory.

5.4 Finding new solving chains
We only covered replacing the codes in the specific chain used in the
solving chain by Bogos and Vaudenay. We expect that we could get
better results using StGen codes, however. The better bc obtained
by StGen codes could lead to better decoding chains. However, we
would need to compute bc for all possible chains with a decoding
step. This would take too much time to do within the scope of this
thesis, but wemay consider this for further work.
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Chapter 6
Implementing algorithms for
solving LPN problems
In this chapter, we present a modular and efficient implementation
of the algorithmswe described. We implemented everything in Rust.
We have implementations of the solving and reduction algorithms
fromBKW(partition-reduce,majority), fromLF1 (fwht) andLF2
(xor-reduce). We also implement Pooled Gauss and the covering-
codes algorithm. For the latterwe implemented thefirst 7Hamming
codes, the (extended) Golay code, repetition codes, [k, k] codes. We
can also construct conatenated codes and StGen codes.

The software allows to compose the different algorithms and
helps understand their behaviour. It is available via https://
thomwiggers.nl/research/msc-thesis/.

This software can easily be adapted to support other reduction or
solving algorithms. We would like to invite other researchers to use
our software when working on LPN.

In Appendix B we describe the API of the software inmore detail.

Rust

The implementation of the software is in Rust, a relatively
new systems programming language sponsored by Moz-
illa [63]. It allows for writing software in a way where it
is more-or-less predictable what the generated machine in-
structions will be, much like in C. This means we can write
efficient software, because there is little overhead from ab-
stractions. We also get a lot of control over memory. How-
ever, the type system is much stronger than C, which helps
guarantee memory safety. The guarantees given by the Rust
type system ensure that it is often trivial to parallelise parts
of algorithms.
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6.1 Abstractions for elementary Boolean mat-
rix and vector operations

We defer our matrix operations to the popular M4RI [3, 43] C library.
This library is named after the Method of Four Russians.1 The name
covers a set of algorithms that efficiently perform Boolean matrix
multiplication [1, 6] and inversion [8]. The library also implements
other approaches for multiplication and inversion, like the Strassen
algorithm [62]. Of course, efficient implementations of elementary
operations, such as addition, are also available.

We provide foreign function interface bindings in Rust that allow
to directly call into this library, butwe also provide safe abstractions.
These abstractions provide away to call the library, while respecting
the memory-safety guarantees provided by Rust. By overloading
the operators for addition, multiplication and so on, we are able to
present the matrix and vector operations more or less as if we are
writing maths. An example is shown in Listing 6.1.

Like the LPN software, this library is available from https://
thomwiggers.nl/research/msc-thesis/. It is alsoavailable as the
m4ri-rust crate.2

use m4ri_rust::friendly::*;
// construct random vectors
let (s, e) = (

BinVector::random(10),
BinVector::random(100));

// a 10×100 rand matrix
let a =

BinMatrix::random(10,100);
let result = s * a + e;

(a) The memory-safe interface.

use m4ri_rust::ffi::*;
unsafe { // Unsafe bindings
let s = mzd_init(1,10);
let a = mzd_init(10,100);
mzd_randomize(s);
mzd_randomize(a);
let prod = mzd_mul(
ptr::null_mut(), a, s);

}

(b) The non-memory-safe direct ffi
interface.

Listing 6.1: The programming interfaces provided by the m4ri-rust
crate.

1It is not entirely clear if they were, in fact, Russian [14, p. 57].
2A crate is a library package in the Rust ecosystem. They are available through

https://crates.io.
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6.2 Defining methods on LPN oracles
We already noted that we can state the reductions as functions from
LPNs,τ problems to LPNs′,τ ′ problems. To this end, we defined our
reductions as operations on a data structure representing the LPN
instance and its associated parameters and samples. This allows to
write code that does not need to be aware of any previous operations.
The result is a modular and pluggable system. We show an example
in Listing 6.2.

// Create LPN oracle with k=32 and tau=1/32
let mut oracle = LpnOracle::new(32, 1.0 / 32.0);
oracle.get_samples(1000);
// apply the LF2 `xor_reduce' reduction
// using b = 8 three times
xor_reduction(&mut oracle, 8);
xor_reduction(&mut oracle, 8);
xor_reduction(&mut oracle, 8);
// solve using two techniques
let fwht_solution = fwht_solve(oracle.clone());
let gauss_solution = pooled_gauss_solve(oracle);

Listing 6.2: An example of different reductions mutating the oracle.
We then recover the solution using two different solving algorithms.

6.3 Covering Codes
For the covering-codes reduction, we clearly need implementations
of linear codes. We provide a library of codes that implement the
same interface. This allows us to swap in different codes as desired,
which is helpful for experiments.

We provide implementations of Hamming codes up to [127, 120],
theGolay codeand its extended form, [k, k] codesand [k, 1] repetition
codes. The basic implementations of the Hamming and Golay codes
are generated using SageMath [56] scripts. In these scripts, we gen-
erate static arrays for the generator and parity-check matrices. For
the Hamming codes up to and including [15, 11], we also generate
lookup tables for encoding and decoding. This allows decoding and
encoding in O(1) time. For the larger Hamming codes and Golay
codes, we pre-generate the tables needed for syndrome decoding.
This allows us to decode inO(1), with the extra cost of amatrixmul-
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tiplication and addition. The [k, k] codes are decoded and encoded by
identity. Finally, repetition codes are decoded by majority.

We also provide implementations of concatenated codes and St-
Gen codes. These take as an argument a list of other codes, to which
they defer for their decoding.

6.4 Testing
We broadly apply Rust’s excellent testing infrastructure to this pro-
ject. Both the matrix primitives and LPN oracle implementations
are covered by extensive unit tests. Additionally, we provide bench-
marks for many of the elementary operations. These helped study
the effect of certain tweaks in the implementation.

Throughout the implementations, assertions are enabled when
running debug builds. These checks help ensure correctness of in-
variants and function preconditions, while in optimised builds these
checks are disabled.

6.5 Examples of usage
In the examples subdirectory of the LPN software, we provide ex-
amples of solving LPN problems using the algorithms described. In-
cluded are, for example, the classic BKW and LF1 algorithms. Ad-
ditionally, we have examples of solving algorithms composed from
several building blocks, as in Listing 6.2.
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Chapter 7
Conclusions and future work
The Learning Parity with Noise problem is hard to solve while only
usingpolynomial amountsofmemory. Wehave shownthat thepoly-
nomial-memorycoveringcodes reductiondoesnot combinewellwith
polynomial-memory solving algorithmGauss. This was done by de-
fining exactlywhen the combination is faster thanapplyingGauss to
the full problem without the reduction. We assumed the existence
of perfect [k, k′] codes and upper bounded the bc we could get for
a covering code. This showed that combining the covering codes
reduction with Gauss is only faster for small δ < δs. This is the
case if the LPN problem has been reduced somehow before applying
the code reduction. We looked at such an example with the Bogos
and Vaudenay reduction chain for LPN512, 18

. Unfortunately, there
δ was so small that the memory required for the samples needed
by the Chernoff bounds test became prohibitive. Also, the memory
advantage over applying the original attack was so small that the
(large) amount extra time required did not warrant the reduction in
memory usage.

Wealso tried to improve codesusedby current proposals for solv-
ing LPN512, 18

to obtain a better result from the covering codes re-
duction. We discussed a sequence of reductions proposed by Bogos
and Vaudenay, by using StGen codes. We compared the results by
constructing StGen codes from the original concatenated code used
in the attack. This gave a better theoretical time complexity, but the
amount of extra work required when decoding the StGen code was
enormous. We constructed a new [189, 64] StGen code from small
repetition codes, [1, 1] codes and [7, 4] Hamming codes. This code
decoded much faster, and we obtained similar results as with the
StGen code based on Bogos and Vaudenay’s random codes.

For futurework,we suggest looking for newsequences of LPN re-
ductions, which solve an LPN instancewithin some amount ofmem-
ory. We suspect that there may be combinations that solve an LPN
problem within low memory. We also think that we may be able to
find new chains, such as the chain Bogos and Vaudenay proposed
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to solve LPN512, 18
. The better bc reached by StGen codes in place

of concatenated codes may well deliver different results. Naturally,
when trying to find new such chains, we also may try to find chains
that solve LPN with in some amount of memory as a time-memory
trade off.
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Appendix A
Creating graphs for Coded Gauss
We created the graphs in chapter 4 using SageMath [56]. Many of
the formula in the chapter donothave a closed form for the variables
we tried to plot. This required us to find other means to obtain the
desired values.

The source code for the graphs is provided through our website
at https://thomwiggers.nl/research/msc-thesis/. Wewill ex-
plain two of the algorithms in the following sections.

A.1 Finding the minimum bc
Werecall Equation (4.1) thatgives the specific caseswhenCodedGauss
is faster than Gauss. Given k, k′ and δ, we find the minimum bc re-
quired such that the equation is true using the gradient descent al-
gorithm in Listing A.1. The function approximates bc with precision
up to 10−precision.

A.2 Bounds on codes
TheHammingbound (Equation (4.2)) on codeshas similar problems.
ListingA.2, contributedbySimonaSamardjiska, showshowwecom-
pute the maximal minimum distance such that [k, k′, D] does not
exceed the bound. We then compute bc using Theorem 1.
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def search_minimal_bc_complete(
k, delta, k_prime, precision=30):

if k_prime == 0:
return None

top = 2
precision = Rational('1/1' + '0'*precision)
step = Rational('1')
while step > precision:

if top - step <= 0:
step /= 10

elif inequality_bc(
k, delta, k_prime, top-step):

top -= step
else:
step /= 10

return top if top != 2 else None

ListingA.1: Algorithmtofind theminimalbc such thatEquation (4.1)
holds. The function inequality_bc returns True if (4.1) holds.

def hamming_bound(k, k_prime):
for d in range(0, k+3):
r = floor((d-1)/2)
if (sum(binomial(k, i) for i in range(r+1)) >

2^(k - k_prime)):
r = floor((d-1-1)/2)
if (sum(binomial(k, i) for i in range(r+1)) <=

2^(k - k_prime)):
if d-1 <= k:
# may return larger d than k ...
return (k_prime, d-1)

else:
return (k_prime, d-2)

Listing A.2: Given [k, k′], computes maximum minimal distance D
such that [k, k′, D] does not exceed the Hamming bound.
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Appendix B
LPN software API
This chapter serves as a brief introduction into the software we
have written. A full and up-to-date version of the documentation
can be found alongside the software via https://thomwiggers.nl/
research/msc-thesis/.

The software is organised around the notion of an LPN problem
that is represented by an oracle. Wemodify this problemby applying
reductions and try to extract the secret through solving methods.

B.1 Module lpn::oracle
B.1.1 LpnOracle
Struct Vec<Sample> has the following fields:

samples: Vec<Sample> The samples held by this LPN problem.

secret: BinVector The secret of the LPN problem.

k: u32 The size of the secret.

delta: f64 The bias of the problem.

delta_s: f64 The bias of the secret.

B.1.1.1 Methods
pub fn new(k: u32, tau: f64) -> LpnOracle CreateanewLPN

problem with a random secret.

pub fn new_with_secret(secret: BinVector, tau: f64) -> LpnOracle
Create a new LPN problem with a set secret.

pub fn get_samples(&mut self, n: usize) Getnnewsamples
from the oracle.
These samples are stored in oracle.samples. Generating the
samples uses multiprocessing.
Example: oracle.get_samples(1000);
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B.1.2 Sample
Struct oracle::Sample has the following fields:

a: BinVector The random vector.

c: bool The noisy inner product.

e: bool The noise added.

For these values the following invariant always holds:

sample.a * oracle.secret + sample.e == sample.c

B.1.2.1 Methods
pub fn count_ones(&self) -> u32 Computes theHammingweight

of the sample.

B.2 Module lpn::bkw
Thismoduledefines thealgorithms fromtheBlum,Kalai andWasser-
man paper [13].

B.2.1 Functions
pub fn bkw(oracle: LpnOracle, a: u32, b: u32) -> BinVector

The full BKW solving algorithm.

Appliespartition_reduce(&mut oracle, b)a−1 timesand
solves via majority.

pub fn partition_reduce(oracle: &mut LpnOracle, b: u32)
Modifies the oracle using the BKW reduction. Applies a single
round.

pub fn majority(oracle: LpnOracle) Recovers the secretusing
the majority method from BKW.

B.3 Module lpn::lf1
This module defines the algorithms by Levieil and Fouque [42].
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B.3.1 Functions
pub fn fwht_solve(oracle: LpnOracle) -> BinVector Solves

using the fast Walsh-Hadamard transform. Uses a fast soft-
ware implementation.

pub fn xor_reduce(oracle: &mut LpnOracle, b: u32) This is
the LF2 reduction. It may grow the number of samples.
Applies a single round.

B.4 Module lpn::gauss
This module defines the Pooled Gauss solving algorithm by Esser,
Kübler and May [27].

B.4.1 Functions
pub fn pooled_gauss_solve(oracle: LpnOracle) -> BinVector

Recover the secret using Pooled Gauss. The oracle must con-
tain sufficiently enough queries for the Test function.

B.5 Module lpn::covering_codes
Implements thecovering-codes reductionand thesparse-secret trans-
formation proposed by Guo, Johansson and Löndahl [30].

B.5.1 Functions
pub fn sparse_secret_reduce(oracle: &mut LpnOracle) Change

the probability distribution of the secret to that of the noise.

pub fn code_reduce(oracle: &mut LpnOracle, code: BinaryCode)
Reduce using the covering-codes algorithm. Make sure you
apply sparse_secret_reduce first.

pub fn unsparse_secret(
oracle: &LpnOracle, secret: &BinVector

) -> BinVector

Undoes the sparse secret reductionon thesuppliedsecret.

B.6 Module lpn::codes
This module defines linear codes for the covering-codes reduction.
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B.6.1 Trait BinaryCode
Traits are used to define a common API.

B.6.1.1 Methods
fn name(&self) The name of the code.

fn length(&self) The length of the code.

fn dimension(&self) The dimension of the code.

fn generator_matrix(&self) -> &BinMatrix Get thegenerator
matrix.

fn parity_check_matrix(&self) -> &BinMatrix Get theparity
check matrix.

fn encode(&self, c: &BinVector) -> BinVector Encodeames-
sage.

fn bias(&self, delta_s: f64) -> f64 Get or compute the bc
of the code.

fn decode_to_message(
&self, c: &BinVector

) -> Result<BinVector, &str>

Decode a codeword to the message space.

fn decode_to_code(
&self, c: &BinVector

) -> Result<BinVector, &str>

Decode a codeword to the codeword space.

B.6.1.2 Implementors
This trait is implemented by the following structs:

• HammingCode3_1: The [3, 1]Hamming code.

• HammingCode7_4: The [7, 4]Hamming code.

• HammingCode15_11: The [15, 11]Hamming code.

• HammingCode31_26: The [31, 26]Hamming code.

• HammingCode63_57: The [63, 57]Hamming code.
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• HammingCode127_120: The [127, 120]Hamming code.

• GolayCode23_12: The [23, 12] Golay code.

• GolayCode24_12: The [24, 12] extended Golay code.

• IdentityCode: [k, k] identity codes.

• RepetitionCode: [k, 1] repetition codes.

• BogosrndCode18_6: The [18, 6] random code from [16, 17].

• BogosrndCode19_6: The [19, 6] random code from [16, 17].

• BogosrndCode19_7: The [19, 7] random code from [16, 17].

• ConcatenatedCode<'codes>: Concatenated codes.

• StGenCode<'codes>: StGen codes.

B.6.2 lpn::codes::ConcatenatedCode
B.6.2.1 Methods
pub fn new(codes: Vec<&'c BinaryCode>) -> ConcatenatedCode<'c>

Constructs a new concatenated code from the codes supplied.

B.6.3 lpn::codes::StGenCode
B.6.3.1 Methods
pub fn new(

codes: Vec<&'c BinaryCode>,
w0: u32,
l_max: usize,
wb: u32,
w_inc: u32

) -> ConcatenatedCode<'c>

Constructs anewStGencode fromthecodes supplied. The
parameters fromdecodearealsopassed to theconstructor.

pub fn l_max(&self) -> usize Get the max list size.

pub fn w0(&self) -> u32 Get the starting weight limit.

pub fn wb(&self) -> u32 Get the round weight limit.

pub fn w_inc(&self) -> u32 Get the round weight increase.
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B.7 Adding a new algorithm
If one would like to add a new algorithm, the easiest way to do so
wouldbe to addanewmodule. Thenewalgorithmcan thenbe imple-
mented there. Any helper functions should generally be kept private
to that module.

A reduction should take the LpnOracle as a &mutmutable refer-
ence. This allows modifying the samples inside without having to
clone the entire object or keep passing around owned references. A
solving method may take an owned reference: generally it is more
efficient if they destroy the LPN oracle instance. This allows them
to consume the samples, saving memory.

We would like to encourage contributions of algorithms.

68


	Introduction
	Post-quantum cryptography
	Learning Parity with Noise
	Our contribution

	Learning Parity with Noise
	Basic notions of coding theory
	The LPN problem
	Solving the LPN problem
	Brute force
	Shortening samples
	BKW
	LF1
	LF2
	Gauss
	Covering codes


	Staircase Generator codes
	Decoding StGen codes
	Selecting parameters for StGen codes
	Selecting codes to construct StGen codes

	Combining covering codes with Gauss
	Efficiency of the combined attack
	Performance with perfect codes
	When the bias of the secret is larger than the bias of the noise


	Improving LPN solving algorithms
	Bogos and Vaudenay's solving chain for LPN512,18
	Computing the bc for random codes
	Improving the codes in Bogos and Vaudenay's solving chain
	Constructing new StGen Codes
	Applying Gauss to the Bogos and Vaudenay algorithm

	Finding new solving chains

	Implementing algorithms for solving LPN problems
	Abstractions for elementary Boolean matrix and vector operations
	Defining methods on LPN oracles
	Covering Codes
	Testing
	Examples of usage

	Conclusions and future work
	References
	Creating graphs for Coded Gauss
	Finding the minimum bc
	Bounds on codes

	LPN software API
	Module lpn::oracle
	LpnOracle
	Sample

	Module lpn::bkw
	Functions

	Module lpn::lf1
	Functions

	Module lpn::gauss
	Functions

	Module lpn::covering_codes
	Functions

	Module lpn::codes
	Trait BinaryCode
	lpn::codes::ConcatenatedCode
	lpn::codes::StGenCode

	Adding a new algorithm


