
Optimizations and Practicality
of High-Security CSIDH

Fabio Campos1,2 , Jorge Chavez-Saab3,4, Jesús-Javier Chi-Domínguez4 ,
Michael Meyer5, Krijn Reijnders2, Francisco Rodríguez-Henríquez4,

Peter Schwabe6,2, and Thom Wiggers7

1 RheinMain University of Applied Sciences, Wiesbaden, Germany
campos@sopmac.de

2 Radboud University, Nijmegen, The Netherlands
krijn@cs.ru.nl

3 Departamento de Computación, CINVESTAV-IPN, Mexico
4 Cryptography Research Center, Technology Innovation Institute, Abu Dhabi,

United Arab Emirates
jorge.saab@tii.ae, jesus.dominguez@tii.ae, francisco.rodriguez@tii.ae

5 University of Regensburg, Germany
michael@random-oracles.org

6 Max Planck Institute for Security and Privacy, Bochum, Germany
peter@cryptojedi.org

7 PQShield, Nijmegen, The Netherlands
thom@thomwiggers.nl

Abstract. In this work, we assess the real-world practicality of CSIDH,
an isogeny-based non-interactive key exchange. We provide the first
thorough assessment of the practicality of CSIDH in higher parameter
sizes for conservative estimates of quantum security, and with protection
against physical attacks.
This requires a three-fold analysis of CSIDH. First, we describe two
approaches to efficient high-security CSIDH implementations, based on
SQALE and CTIDH. Second, we optimize such high-security implemen-
tations, on a high level by improving several subroutines, and on a low
level by improving the finite field arithmetic. Third, we benchmark the
performance of high-security CSIDH. As a stand-alone primitive, our
implementations outperform previous results by a factor up to 2.53×.
As a real-world use case considering network protocols, we use CSIDH
in TLS variants that allow early authentication through a NIKE. Al-
though our instantiations of CSIDH have smaller communication re-
quirements than post-quantum KEM and signature schemes, even our
highly-optimized implementations result in too-large handshake latency
(tens of seconds), showing that CSIDH is only practical in niche cases.
Keywords: post-quantum cryptography, isogenies, CSIDH, TLS

Author list in alphabetical order; see https://www.ams.org/profession/leaders/
CultureStatement04.pdf. This work has been supported by the German Federal Min-
istry of Education and Research (BMBF) under the project 6G-RIC (ID 16KISK033);
by Deutsche Forschungsgemeinschaft (DFG, German research Foundation) as part of
the Excellence Strategy of the German Federal and State Governments – EXC 2092
CASA - 390781972; and by the European Commission through the ERC Starting
Grant 805031 (EPOQUE). Date: October 24, 2023

https://orcid.org/0000-0003-3912-7570
https://orcid.org/0000-0002-9753-7263
https://orcid.org/0000-0001-8967-8456
https://www.ams.org/profession/leaders/CultureStatement04.pdf
https://www.ams.org/profession/leaders/CultureStatement04.pdf

1 Introduction

The commutative isogeny-based key exchange protocol (CSIDH) was proposed by
Castryck, Lange, Martindale, Panny, and Renes [22] at Asiacrypt 2018. Although
it was proposed too late to be included as a candidate in the NIST post-quantum
standardization effort [53], it has since received significant attention from the
post-quantum-crypto research community.

From a crypto-engineering point of view, this attention can be explained by
two unique features of CSIDH: Firstly, with the originally proposed parameters,
CSIDH has remarkably small bandwidth requirements. Specifically, CSIDH-512,
the parameter set targeting security equivalent to AES-128, needs to transmit
only 64 bytes each way, more than 10 times less than Kyber-512, the KEM
chosen for standardization by NIST. Secondly—and more importantly—CSIDH
is so far the only realistic option for post-quantum non-interactive key exchange
(NIKE), meaning it can be used as a post-quantum drop-in replacement for
Diffie–Hellman (DH) key exchange in protocols that combine ephemeral and
static DH key shares non-interactively. Such protocols include the Signal X3DH
handshake [49] and early proposals for TLS 1.3 [38], known as OPTLS. The
OPTLS authentication mechanism is still under consideration as an extension [58].
CSIDH is the only post-quantum NIKE that might enable these use cases, except
for the recently-proposed Swoosh algorithm [30] (which has too-large public keys
for use in TLS).

Unfortunately, quite soon after CSIDH was proposed, several security analyses
called into question the claimed concrete security against quantum attacks
achieved by the proposed parameters [12, 24, 55]. The gist of these analyses
seems troublesome; Peikert [55] states that “the cost of CSIDH-512 key recovery
is only about 216 quantum evaluations using 240 bits of quantumly accessible
classical memory (plus relatively small other resources)”. Similarly, Bonnetain
and Schrottenloher [12] claim a cost of 219 quantum evaluations for attacking the
same instance, and propose a quantum circuit requiring only 252.6 T-gates per
evaluation, which means the security would still be insufficient. Upon exploring
the quantum cost of attacking larger instances but ignoring the cost per CSIDH
quantum evaluation, instances may require 2048 to 4096 bit keys to achieve the
security level originally claimed by CSIDH-512 [24].

Interestingly, although some of these concerns were raised as early as May
2018 (i.e., at a time when [22] was available only as preprint), most research on
efficient implementations [5, 23, 50, 54], side-channel attacks [17], and fault attacks
against CSIDH [7, 16, 44] continued to work with the original parameters. This
can probably partly be explained by the fact that the software implementation
referenced in [22]8 implements only the smaller two of the three original parameter
sets, i.e., CSIDH-512 and CSIDH-1024. However, another reason is that the
concerns about the quantum security of CSIDH were (and to some extent still
are) subject of debate. Most notably, Bernstein, Lange, Martindale, and Panny
[9] point out that one issue with quantum attacks against CSIDH is the rather
8 Available from https://yx7.cc/code/csidh/csidh-latest.tar.xz

2

https://yx7.cc/code/csidh/csidh-latest.tar.xz

steep cost of implementing CSIDH on a quantum computer in the first place.
They conclude that the cost of each query pushes the total attack cost above 280.

In this paper, we do not take any position in this ongoing debate but rather
set out to answer the question of what it means for CSIDH performance and
applicability if we choose more conservative parameters. This includes protection
against physical attacks, which is often required for real-world applications. We
call such instantiations high-security CSIDH.

Contributions of this paper. The core contribution of this paper is an in-
depth assessment of the real-world practicality of CSIDH.9 On a high level, this
assessment is divided into three parts. First, we instantiate CSIDH at high(er)
security levels, suitable for real-world applications, and with protection against
physical attacks; second, we optimize the efficiency of high-security CSIDH; third,
we test the practicality of high-security CSIDH.

1. Efficient CSIDH instantiations, following two different approaches of imple-
menting high-security CSIDH.
(a) The first approach aims at protection against physical attacks, and

is based on SQALE [24]. In this approach, we eliminate randomness
requirements and the use of dummy operations in CSIDH by restricting
the keyspace to {−1, 1}n, as proposed by Cervantes-Vázquez, Chenu,
Chi-Domínguez, De Feo, Rodríguez-Henríquez, and Smith [23]. We refer
to this deterministic version of CSIDH as dCSIDH.

(b) The second approach optimizes purely for performance and uses the
CTIDH batching techniques introduced in [5]. We refer to this variant of
CSIDH as CTIDH. In particular, we extend the implementation from [5]
to larger parameter sets.

2. Optimized implementation of dCSIDH and CTIDH.
(a) On a high level, we present faster key validation for large parameters,

and add a small number of bits to public keys to improve shared-key
generation in dCSIDH.

(b) On a low level, we improve the finite field arithmetic. Our implementations
use curves over large prime fields Fp, where p ranges from 2048 to 9216
bits. We optimize arithmetic in these fields for 64-bit Intel processors,
specifically the Skylake microarchitecture, using three different options
for the underlying field arithmetic.

– an approach based on the GNU Multiple Precision Library (GMP)
– MULX-based multiplier using the schoolbook approach (OpScan)
– MULX-based multiplier using the Karatsuba approach (Karatsuba)

3. Practicality benchmark of dCSIDH and CTIDH.
(a) As a standalone primitive, we benchmark our optimized C/assembly

implementations. Our dCSIDH implementation outperforms previous
implementations by a factor up to 2.53×. Our CTIDH implementation is

9 All our work follows the “constant-time” paradigm for cryptographic implementa-
tions and thus protects against timing attacks by avoiding secret-dependent branch
conditions and memory indices.

3

the first using large parameters, and, dropping determinism, is thrice as
fast as dCSIDH.

(b) As a real-world use case, we benchmark both dCSIDH and CTIDH in real-
world network protocols. We extend the Rustls library [11] to support
OPTLS [38]. OPTLS is a variant of the TLS 1.3 handshake that heavily
relies on NIKE for authentication, and avoids handshake signatures (which
are especially large (Dilithium [47]) or hard to implement (Falcon [56]) in
the post-quantum setting). We compare the performance of the resulting
post-quantum OPTLS to post-quantum KEMTLS [61], which is an
OPTLS-inspired protocol that uses KEMs for authentication to avoid
handshake signatures (but requires significant changes to the handshake
protocol). Our results show that dCSIDH and CTIDH are too slow for
general-purpose use, as a fully CSIDH-instantiated handshake protocol,
though smaller in bandwidth requirements, is orders of magnitude slower
than an equivalent based on signatures or KEMs. This implies that current
NIKE-based protocols will require changes to transition to post-quantum
security, if they are sensitive to latency.

Related work. The impact that the proposal of CSIDH has produced in the
community can be assessed by the many papers that have been produced around
this protocol. Since Castryck, Lange, Martindale, Panny, and Renes [22] left
open the problem of implementing CSIDH in constant-time, several papers were
published proposing different strategies for achieving this property.

The first constant-time implementation of CSIDH was reported by Bernstein,
Lange, Martindale, and Panny [9]. Their analysis focused on assessing the quan-
tum security level provided by CSIDH. For this purpose, they strove for producing
not only a constant-time CSIDH instantiation but also a randomness-free imple-
mentation of it. Meyer, Campos, and Reith [50] (see also [51]) presented a more
efficient constant-time instantiation of CSIDH for practical purposes. They intro-
duced several algorithmic tricks, including the SIMBA technique, and sampling
secret keys from varying intervals. This was further improved by Onuki, Aikawa,
Yamazaki, and Takagi [54], who proposed to keep track of two points to evaluate
the action of an ideal: one in E(Fp), and one in E(Fp2) with its x-coordinate in
Fp. Moreover, Moriya, Onuki, and Takagi [52], and Cervantes-Vázquez et al. [23],
performed more efficient CSIDH isogeny computations using the twisted Edwards
model of elliptic curves. The authors of [23] proposed a more computationally
demanding dummy-free variant of CSIDH, which in exchange, is arguably better
suited to resist physical attacks from stronger adversaries, such as fault attacks.

In a second wave of studies around CSIDH, several crucial building blocks
were improved. [26, 34] presented a framework that permits to adapt the optimal
strategies of SIDH/SIKE into the context of CSIDH. The computation of large
degree isogenies using an improved version of Vélu’s formulas known as

√
élu [8],

was exploited in [1, 5]. Variants of CSIDH were reported in [19, 20, 25].
A breakthrough in the performance of constant-time CSIDH was achieved

by Banegas, Bernstein, Campos, Chou, Lange, Meyer, Smith, and Sotáková [5],

4

resulting in an almost twofold speedup. They introduce a variant, named CTIDH,
using a new key space and accompanying constant-time algorithms that exploit
the idea of batching isogeny degrees. However, the performance evaluation of [5]
is restricted to primes of 512 and 1024 bits. The authors of [24] presented SQALE,
the first CSIDH implementation at higher security levels going all the way from
primes of size 2000 bits up to 9000 bits. The software we present here starts from
the analysis and parameter sizes proposed in [24] to reach NIST security levels 1
(equivalent AES-128) and 3 (equivalent AES-192) under different assumptions
about the efficiency of quantum attacks. However, our results go much further
with regard to optimizing parameters and implementation techniques than [24].

CSIDH is not the only attempt at building a post-quantum NIKE. Although
the SIDH protocol [28, 35] was known to be insecure in the static-static sce-
nario [31], it was suggested in [3] that a NIKE could still be obtained at the cost
of many parallel executions of SIDH. However, SIDH was completely broken by
the attacks in [18, 48, 59]. The only post-quantum NIKE that is not based on
isogenies is based on (R/M)LWE and, according to Lyubashevsky, goes back
to “folkore” [46]. Such a NIKE was first analyzed in [37]. A more concrete in-
stantiation of this approach is the recently proposed Swoosh [30]. We discuss
differences between CSIDH and Swoosh in a bit more detail in Section 7.

Availability of software. We place our CSIDH software into the public domain
(CC0). All software described in this paper and all measurement data from the
TLS experiments are available at https://github.com/kemtls-secsidh/code.

Organization of this paper. Section 2 presents the necessary background on
isogeny-based cryptography and introduces CSIDH and its CTIDH instantiation.
Section 3 explains how we instantiate dCSIDH and CTIDH and choose parameters
for our optimized implementations. Section 4 introduces algorithmic optimizations
that apply to our instantiations of dCSIDH and CTIDH. Section 5 details our
optimization techniques for finite field arithmetic, in particular the efficient
Karatsuba-based field arithmetic, and presents benchmarking results for the group
action evaluation for dCSIDH and CTIDH. Section 6 describes our integration of
dCSIDH and CTIDH into OPTLS and presents handshake performance results.
Finally, Section 7 concludes the paper and sketches directions for future work.

2 Preliminaries

2.1 NIKEs vs. KEMs

We briefly recall the definitions of non-interactive key exchange (NIKE) and
key-encapsulation mechanism (KEM) as follows:

Definition 1. A non-interactive key exchange (NIKE) is a collection of two
algorithms, KeyGen and SharedKey, where

– KeyGen is a probabilistic algorithm that on input 1k, where k is a security
parameter, outputs a keypair (sk, pk); and

5

https://github.com/kemtls-secsidh/code

– SharedKey is a deterministic algorithm that on input a public key pk and a
secret key sk outputs a shared key K.

A NIKE is correct if for any (sk1, pk1)← KeyGen(1k) and (sk2, pk2)← KeyGen(1k)
it holds that SharedKey(pk1, sk2) = SharedKey(pk2, sk1).

Definition 2. A key-encapsulation mechanism (KEM) is a collection of three
algorithms, KeyGen, Encaps, and Decaps, where

– KeyGen is a probabilistic algorithm that on input 1k, where k is a security
parameter, outputs a keypair (sk, pk); and

– Encaps is a probabilistic algorithm that on input a public key pk outputs a
ciphertext ct and a shared key K.

– Decaps is a deterministic algorithm that on input a ciphertext ct and a secret
key sk outputs a shared key K.

A KEM is correct if for any (sk, pk)← KeyGen(1k) and (ct, K)← Encaps(pk) it
holds that Decaps(ct, sk) = K.

Both NIKEs and KEMs can be used for key exchange, but the non-interactive
nature of a NIKE makes it more flexible than a KEM. In the context of their use
in protocols, there are three different scenarios:

1. Some scenarios naturally use a KEM. Those scenarios can alternatively also
use a NIKE, but they do not benefit in any way from the non-interactive
nature of a NIKE. An example for this scenario is the ephemeral key exchange
in TLS 1.3, which currently uses (EC)DH, but will easily migrate to post-
quantum KEMs [13, 14, 41, 42, 64].

2. Some protocols, most notably the X3DH protocol in Signal [49] have to use
a NIKE and cannot replace this NIKE by a KEM. The reason is that this
protocol cannot assume communication partners to be online at the same
time and critically relies on the non-interactive nature of a NIKE.

3. Some protocols are somewhat in between: they can be designed from KEMs
only, but this comes at the cost of more communication rounds. This has been
discussed in some detail in the design of post-quantum Noise [2] and also in
the context of the NIKE-based OPTLS [38] vs. the KEM-based KEMTLS [61].
We will revisit the comparison of these two protocols in a post-quantum
context in more detail in Section 6.

2.2 The CSIDH NIKE

Background. Let Fp be a finite field of prime order p, such that p + 1 =
f · g ·

∏n
i=1 ℓi, where each ℓi is a small odd prime, f ≥ 4 is a power of two, and g

is a cofactor guaranteeing that p is prime. Now consider the set of supersingular
elliptic curves over Fp, i.e., the elliptic curves with p + 1 Fp-rational points. We
will represent these curves in the Montgomery model, i.e., through an equation
of the form

EA : y2 = x3 + Ax2 + x, A ∈ Fp. (1)

6

This is possible since the group order (p + 1) is a multiple of 4. In the context of
CSIDH we are interested in isogeny graphs of degree N , denoted GN (Fp). The
vertices of such graphs are precisely the supersingular curves over Fp; the edges
are Fp-rational isogenies of degree N . CSIDH relies on the following property: for
each small odd prime ℓi dividing p + 1, a supersingular curve EA has only two
(supersingular) neighbors in the isogeny graph Gℓi

(Fp) (i.e., isogenies over Fp of
degree ℓi). We can uniquely describe these isogenies by their kernels: The unique
cyclic subgroup of order ℓi of EA(Fp) defines the isogeny from EA to one of these
neighbors EA′ . This cyclic subgroup can be described by any of its generators,
which in this case means that finding a point in EA(Fp) of order ℓi is enough
to describe an isogeny of degree ℓi. As EA′ is again supersingular, EA′(Fp) has
order p + 1 as well and hence a unique cyclic subgroup of order ℓi, which gives
an isogeny to the unique neighbor that is not EA. The general action of moving
in this direction in this graph Gℓi

(Fp) using the unique subgroup of order ℓi

is denoted by li, and the curve EA′ that is reached from EA by this action is
denoted li ∗ EA. In short, li represents one step in the isogeny graph Gℓi(Fp),
and each small odd prime ℓi dividing p + 1 gives us such an li. Steps in Gℓi

(Fp),
represented by li, are commutative, so that applying li to lj ∗ EA is the same as
applying lj to li ∗ EA for different degrees ℓi and ℓj . We can also compute steps
in the other direction, which is denoted by l−1

i ∗ EA. The subgroup of points of
order ℓi with x-coordinate in Fp and y-coordinate in Fp2\Fp uniquely defines the
corresponding isogeny kernels. Applying both li and l−1

i effectively cancels out,
i.e., we have li ∗ (l−1

i ∗ E) = l−1
i ∗ (li ∗ E) = E.

The CSIDH scheme. The CSIDH scheme [22] unrolls naturally from the action
described above: The secret key is a vector of n integers (e1, . . . , en) defining the
product a =

∏n
i=1 l

ei
i . In the original proposal the integers ei are chosen from

{−m, . . . , m} for some m ∈ N, which results in a key space of size (2m + 1)n.
The public key is the supersingular curve EA which corresponds to the secret
key a applied to a publicly known starting curve E0:

EA = a ∗ E0 = le1
1 ∗ · · · ∗ len

n ∗ E0. (2)
This public key EA can be encoded by the single value A ∈ Fp (see Equation (1)).
Shared-key computation is the same as public-key computation, except that
instead of the public parameter E0 it uses a public key EA as input curve. That
is, Alice and Bob compute their shared secret by calculating EAB = a ∗ EB =
(a ·b)∗E0 and EBA = b∗EA = (b ·a)∗E0, respectively, with EAB = EBA thanks
to the commutativity. This is summarized by the following diagram:

E0 EA

EB EAB

a

a

b b

Computing the group action a ∗ E. Straightforward high-level pseudocode
for the computation of the group action a ∗ E is given in Algorithm 1. The

7

dominating cost is the construction and evaluation of the ℓi-isogenies correspond-
ing to the action of the li (Lines 5 and 7), which in turn decompose into a
sequence of operations in Fp. However, the high-level view also illustrates an
additional complication for secure implementations of CSIDH, namely that the
number of iterations of the inner loop (Line 3) and the direction of the isogenies
corresponding to the action of li (Line 4) depend on the secrets ei and naive
implementations thus leak secret information through timing.

Algorithm 1 High-level view of the CSIDH group action computation.
Input: I ∈ Fp defining a curve EI

Input: secret key (e1, . . . , en)
Output: R ∈ Fp defining a curve ER = le1

1 ∗ · · · ∗ l
en
n ∗ EI

1: ER ← EI

2: for i from 1 to n do
3: for j from 1 to |ei| do
4: if ei > 0 then
5: ER ← li ∗ ER

6: else
7: ER ← l−1

i ∗ ER

8: end if
9: end for

10: end for
11: return R

For constant-time behavior, we need to be careful not to leak this information
on ei. Current implementations of CSIDH hide ei by computing m isogenies
per degree ℓi, while effectively performing |ei| isogenies, e.g., by using dummy
computations or computations that effectively cancel each other such as li∗l−1

i ∗E.
For the sake of simplicity, Algorithm 1 omits the description of several

underlying building blocks. For example, the computation of an isogeny of degree
ℓi requires as input a point of order ℓi. Points of a prescribed order can be
obtained probabilistically by sampling random points on the current curve. Any
randomly sampled point T can generate exactly one isogeny of those degrees ℓi

that divide the order of T , by pushing T through such isogenies to get a similar
point T on the codomain curve. The order in which we perform such ℓi-isogenies
giving a point T that can perform multiple of them influences the performance.
Hence, different strategies, i.e. orderings of ℓi-isogenies, point evaluations, and
point multiplications, can affect performance. Several efficient strategies are
described in, e.g., [22, 26]. We describe our choices for the CSIDH group action
computation in more detail in Section 3 and Section 4.

Computing a single isogeny ER ← li ∗ ER. A single isogeny ER ← li ∗ER

can be computed in multiple ways: Traditionally, the formulas introduced by Vélu
[63] are used, at a cost of approximately 6ℓ field multiplications for an isogeny
of degree ℓ. In 2020, [8] presented new formulas for constructing and evaluating

8

isogenies of degree ℓ, at a combined cost of just Õ(
√

ℓ) field multiplications,
denoted as

√
élu. With respect to CSIDH, [1] reports that the

√
élu formulas

of [8] improve the traditional formulas for isogenies of degree ℓ ≥ 89, and concludes
that constant-time CSIDH implementations using 511- and 1023-bit primes are
moderately improved by the

√
élu formulas. The authors from [19] presented a

variant of CSIDH named CSURF, which essentially proposes using 2-isogenies
by calculating radical computations (i.e., by performing exponentiation with a
fixed exponent along with a field inversion). [21] extended the radical approach
to compute isogenies for odd isogeny degrees less than 13. Both works suggest a
modest savings in the running time of CSIDH and essentially CSURF can be
considered CSIDH with radical isogenies of degree 2. On the one side, the authors
from [25] improved the formulas from [19, 21] by presenting an inverse-free
method to compute such radical isogenies at the cost of a single exponentiation.
Conversely, the recent work from [20] provided some interesting improvements
(in terms of field multiplication) to the results from [21]; they still require one
exponentiation by a fixed exponent and at least one field inversion, which are
the bottleneck. Nevertheless, [25] additionally showed that such radical isogenies
become too costly in large CSIDH parameters. On that basis, we will not make
use of the radical isogenies, as the analysis from [25] shows that this is unfavorable
when the base field Fp is larger than 1024 bits.

2.3 CTIDH

Banegas, Bernstein, Campos, Chou, Lange, Meyer, Smith, and Sotáková [5]
proposed a new approach for constant-time CSIDH, named CTIDH. The main
novelties are a different way of specifying the key spaces, and some algorithmic
adaptions in order to obtain a constant-time algorithm.

CTIDH key spaces. For defining CTIDH keyspaces, we organize the primes ℓi

in N batches, such that each batch consists of consecutive primes. In particular,
we choose a vector of batch sizes N = (N1, . . . , NB) with all Ni > 0, such that∑B

i=1 Ni = n. Then we distribute the n prime degrees ℓ1, . . . , ℓn among those
B batches. That is, we define the first batch as (ℓ1,1, . . . , ℓ1,N1) := (ℓ1, . . . , ℓN1),
the second batch as (ℓ2,1, . . . , ℓ2,N2) := (ℓN1+1, . . . , ℓN1+N2), etc. Accordingly, we
relabel the private key elements ek as ei,j .

Instead of directly sampling the key elements ei,j from some interval [−m, m]
as in CSIDH, CTIDH only limits the 1-norm of each key batch. That is, for
the i-th batch (ℓi,1, . . . , ℓi,Ni

), we fix a bound mi and sample corresponding key
elements ei,j such that

∑Ni

j=1 |ei,j | ≤ mi. This means that for each isogeny we
compute for the i-th batch, its degree could be any of ℓi,1, . . . , ℓi,Ni

. This adds a
combinatorial advantage, in the sense that the same number of isogenies as in
CSIDH leads to a much larger key space size in CTIDH. In other words, CTIDH
requires a smaller number of isogenies for reaching the same key space size. For
example, the fastest previous constant-time implementation of CSIDH-512 with
key space size 2256 required the computation of 438 isogenies, while the CTIDH
parameters of [5] only requires 208 isogenies for the same key space size. For

9

details, we refer to [5]. We note that as defined above, CSIDH is a special case of
CTIDH using n batches of size 1.

CTIDH algorithm. The main problem for constant-time implementations
with this adapted key space lies in the fact that we must hide the degree of each
isogeny from side channels. Given that the computational effort for an isogeny
directly depends on its degree, a straightforward implementation of CTIDH
would leak the degree of each isogeny. On the other hand, an attacker must
not be able to observe to which degree out of {ℓi,1, . . . , ℓi,Ni} each isogeny for
the i-th batch corresponds. [5] achieves this by using an observation from [9].
The usual isogeny formulas [8, 63], have a Matryoshka-doll structure. That is, if
ℓi < ℓj , then an ℓj-isogeny performs exactly the computations that an ℓi-isogeny
would require, plus some extra operations. Therefore, we can easily compute
an ℓi-isogeny at the cost of an ℓj-isogeny, by performing dummy operations
for the extra steps. In CTIDH, we use this idea to compute each isogeny for
the i-th batch (ℓi,1, . . . , ℓi,Ni

) at the cost of the most expensive degree, i.e., an
ℓi,Ni

-isogeny. In this way, the isogeny degrees do not leak via timing channels.
There are several other operations that require adjustments in CTIDH in

order to obtain a constant-time implementation. For instance, this includes scalar
multiplications that produce points of suitable order, or point rejections, which
must occur independently of the required isogeny degree. For details on how
these issues are resolved, we refer to [5].

Even though these algorithmic adjustments induce some computational over-
head, CTIDH is almost twice as fast as its CSIDH counterpart for the CSIDH-512
and CSIDH-1024 parameter sets from [22] (see [5]).

2.4 Quantum security

While classical security imposes a restriction on the minimum key space size,
quantum security usually poses more restrictive requirements. However, it is
argued in [24] that for reasonable key spaces (that is, spaces large enough to
achieve classical security), the quantum security of CSIDH relies only on the
size of the prime p, regardless of the size of the actual key space being used.
This is due to the fact that the most efficient quantum attack, Kuperberg’s
algorithm [40], requires working over a set with a group structure. Since the
entire group representing all possible isogenies is of size roughly √p,10 this attack
needs to search a space much larger than the keyspace itself, which only depends
on n and the exponent bound m. For example, in the case of CSIDH-512, the
element l3 alone generates the entire group of size roughly 2257 [10]. It is expected
that a handful of li generate the entire group also for larger instances. In a
nutshell, classical security is determined by the size of the key space, whereas
quantum security is determined by the size of p, as long as the key space is not
chosen particularly badly, e.g., as a small subgroup of the full class group.

10 The li represent elements of the class group Cℓ(Z[√p]), which has size roughly √p.

10

3 Proposed instantiations of CSIDH

In this section, we describe how to instantiate and choose parameters for large-
parameter CSIDH. We describe two different approaches to selecting parameters:
dCSIDH targets a deterministic and dummy-operation-free implementation11,
whereas CTIDH optimizes for the batching strategies proposed in [5]. This reflects
the two extreme choices one can make to either prioritize security against physical
attacks or speed. We note that there are several choices in the middle ground,
trading off physical security for speed. For comparability, both approaches share
the choice of underlying finite fields Fp, which we detail in Section 3.1.

3.1 The choice of p

In this work, we take the conservative parameter suggestions from [24] at face
value. In particular, we consider primes of 2048 and 4096 bits to target NIST
security level 1, 5120 and 6144 bits to target NIST security level 2, and 8192 and
9216 bits to target NIST security level 3. Each pair of bitsizes represents a choice
between more “aggressive” assumptions (with attacker circuit depth bounded
by 260) or more “conservative” assumptions (attacker circuit depth bounded by
280). As stressed in [24], this choice of parameters does not take into account the
cost of calls to the CSIDH evaluation oracle on a quantum computer and is likely
to underestimate security. However, as discussed in Section 1, we merely aim at
giving performance results for conservative parameters.

All our implementations use primes of the form p = f ·
∏n

i=1 ℓi − 1, where
ℓi are distinct odd primes, f is a large power of 2 and n denotes the number of
such ℓi dividing p + 1. For these sizes of p, it becomes natural to pick secret key
exponents ei ∈ {−1, +1}, as n can be chosen large enough to reach the desired
keyspace size [23, 24]. In particular, to achieve a keyspace of b bits in CSIDH we
need to have at least n = b of these ℓi in this case.

For conservative instances, we base the keyspace sizes on the classical meet-
in-the-middle (MITM) attack considered in [22], requiring b = 2λ for security
parameter λ. That is, b = 256, 256, 384 for p4096, p6144, p9216, respectively. On
the other hand, for aggressive instances we based the keyspace size on the limited-
memory van Oorschot-Wiener golden collision search [62] with the assumptions
from [24], which leads to b = 221, 234, 332 for p2048, p5120, p8192, respectively.

Finally, we restrict to cofactors f for which the power of 2 is a multiple of
64, since the arithmetic optimizations discussed in Section 5 require this shape.
Hence, to find optimal primes for our implementation, we let ℓ1, . . . , ℓb be the
b smallest odd primes and then compute the cofactor f as the largest power of
264 that fits in the leftover bitlength. This still leaves us with a bitlength slightly
smaller than the target, and hence the leftover bits can be used to search for
additional factors ℓi (making n > b) that make f ·

∏n
i=1 ℓi − 1 a prime number.

11 Our implementation does not take the recent physical attacks [7, 17] into account,
whose impact in the high-parameter range is unclear. Heuristically, countermeasures
against both attacks should not impact performance by much.

11

These extra factors go unused for dCSIDH, where they are viewed as part of
the cofactor, but are exploited by the batching strategies of CTIDH to increase
performance. We set a minimum requirement of 5 additional ℓi factors (that is,
n ≥ b + 5), decreasing f by a single factor of 264 when not enough bits were left
over. The results of this search are shown in Table 1.

Table 1: Parameters for reconstructing each prime p = f ·
∏n

i=1 ℓi − 1. In each
case the ℓi are assumed to be the first n odd primes, excluding some primes
and including larger primes ℓi to ensure that p is prime. These are given in the
Excluded and Included columns.

Prime bits f n Excluded Included Key Space NIST level

p2048 264 226 {1361} − 2221 1 (aggressive)
p4096 21728 262 {347} {1699} 2256 1 (conservative)
p5120 22944 244 {227} {1601} 2234 2 (aggressive)
p6144 23776 262 {283} {1693, 1697, 1741} 2256 2 (conservative)
p8192 24992 338 {401} {2287, 2377} 2332 3 (aggressive)
p9216 25440 389 {179} {2689, 2719} 2384 3 (conservative)

3.2 Parameters for dummy-free, deterministic dCSIDH

The restriction of exponents to {−1, +1} makes it easier to make dCSIDH de-
terministic and dummy free [23, 24], as we always perform only one isogeny of
each degree, with the only variable being the “direction” of each isogeny. Since
isogenies in either direction require exactly the same operations, it is easy to
obtain a constant-time implementation without using dummy operations.

Randomness appears in the traditional CSIDH implementation: it arises from
the fact that performing isogenies of degree ℓi requires a point of order ℓi as
input, and such a point is obtained by sampling random points on the current
curve. Any random point can either be used for “positive” steps l+1

i or “negative”
steps l−1

i . Hence, a point of order ℓi can be used only once and only for a specific
orientation. Doing more than one isogeny of each degree requires us, therefore, to
sample new points midway. However, by restricting ei to {−1, +1}, we have to
compute only one isogeny per degree ℓi. This allows us to avoid random sampling
by providing a pair of points T+, T− beforehand whose orders are divisble by all
ℓi, where T+ can be used for the positive steps li with ei = 1, and T− for the
negative steps l−1

i , with ei = −1. We refer to such points as full-torsion points,
as they allow us to perform an isogeny of every degree ℓi by multiplying them by
the right scalar. That is, to perform an ℓi-isogeny in the “plus” direction, we can
use the point [p+1

ℓi
] T+ of order ℓi.

Note that the probability for the order of a random point to contain the
factor ℓi is given by ℓi−1

ℓi
. Thus, sampling for a pair of full-torsion points can

12

be expensive when small factors ℓi are used, as they dominate the probability∏ ℓi−1
ℓi

of sampling a full-torsion point. Since the primes we use always have
additional ℓi factors that are unused in dCSIDH (see Section 3.1), we make point
sampling more efficient by always discarding the smallest primes rather than the
largest ones, increasing the odds to sample a full-torsion point. For example, the
prime p4096 has 262 ℓi factors but only needs a keyspace of 2256, hence we can
discard 6 primes. By discarding the 6 smallest ones, the probability to sample a
full-torsion point goes up from

∏256
i=1

ℓi−1
ℓi
≈ 0.151 to

∏262
i=7

ℓi−1
ℓi
≈ 0.418, making

it more than 2.7 times as easy to sample full-torsion points T+ and T−. Such
a shift in primes causes a trade-off in the rest of the protocol, as higher-degree
isogenies are more expensive. However, due to the improvements in [8], the extra
cost of using ℓ257, . . . , ℓ262 instead of ℓ1, . . . , ℓ6 is relatively small in comparison
to the total cost of a group action computation. Thus, discarding the smallest ℓi

is preferable as it significantly decreases the cost of sampling full-torsion points,
and only increases the cost of computing a ∗ E by a marginal amount.

The points T+, T− on the starting curve E0 can be precomputed and considered
public parameters, but for the public-key curves they must be computed in
real time. We include the computation of these points in the key generation,
and include them in the public key, which makes the shared-secret derivation
completely constant-time and deterministic. The key generation is then the only
part that does not run in strictly constant wall-clock time (yet is implemented
following the constant-time paradigm), but is still made deterministic by sampling
points in a pre-defined order. As we describe in Section 4, these points can be
represented in a very compact form, which increases public-key sizes by only a few
bits. We further emphasize that in order to avoid active attacks, the shared-key
computation must validate these transmitted points to be full-torsion points.

Following the SQALE implementation [24], we use the optimal strategy
approach from [26] to efficiently evaluate the class group action.

3.3 Parameters for CTIDH

As mentioned above, the instantiations of dCSIDH that we use are designed as
dummy-free and deterministic algorithms, in order to avoid potential issues with
randomness and dummy operations. However, these choices induce significant
computational overhead. Therefore, we additionally give performance results
for CTIDH [5], the fastest available constant-time implementation of CSIDH
(allowing randomness and dummy operations), at the same security levels so that
we can compare performance. Note that [5] only reports performance results for
512-bit and 1024-bit primes.

For the parameter sizes considered in this work, we thus use the same primes
as in the dCSIDH case (see Table 1). This allows for a simple comparison of the
two approaches, since both implementations use the same finite field arithmetic
(see Section 5). On the other hand, it is unclear which parameters are optimal
for CTIDH with the given prime sizes. A larger number of small prime factors ℓi

in the factorization of p + 1 can be beneficial, since the combinatorial advantage
of CTIDH batching increases with the number of available prime degrees. On the

13

other hand, this would mean that we have to include larger ℓi, and therefore
compute more expensive large degree isogenies. Furthermore, the choice of CTIDH
parameters, i.e., batches and norm bounds, becomes more challenging at larger
prime sizes. We thus leave the exploration of optimal CTIDH parameters for large
primes as future work.

For the given primes, we use the greedy algorithm from [5] for determining
these additional parameters, adapted to the case of the cofactor f > 4. On input
of the primes ℓi and a fixed number of batches, the algorithm searches for a
locally optimal way of batching the primes, and according norm bounds, such
that the expected number of field multiplications per group action evaluation
is minimized. However, for the parameter sizes in this work, the greedy search
becomes increasingly inefficient. We could thus only run searches for a small set
of potential batch numbers, especially for the larger parameters. We obtained
these potential inputs by extrapolating from the data of smaller parameter sizes
from [5] and slightly beyond. For concrete parameter choices, we refer to our
software. Note that the choice of a different number of batches could improve the
results, but an exhaustive search using the greedy algorithm seems out of reach.

Apart from the parameters and batching setup, our CTIDH implementation
uses the algorithms and strategies from [5]. We remark that CTIDH could in
theory also be implemented in a dummy-free or deterministic way. [5] presents
an algorithm that avoids dummy isogenies, but points out that the Matryoshka
isogenies require dummy operations by design. Thus, the current techniques do
not allow for a dummy-free implementation of CTIDH. Further, the design of
a deterministic variant of CTIDH requires some adaptions, such as computing
multiple isogenies per batch in a single round. We leave the design and analysis
of such an implementation for future work.

4 Optimizing dCSIDH and CTIDH

Given the parameter choices from Section 3, we describe the high-level opti-
mizations we apply for dCSIDH and CTIDH. Note that apart from the improved
public key validation, we use the standard CTIDH implementation from [5] ex-
tended to the parameter sizes from Section 3.3. For dCSIDH, we present several
improvements in Section 4.2.

4.1 Supersingularity verification

For the prime choices from Section 3.1, we need to adapt the supersingularity
verification from [22]. In particular, given primes with cofactor log f > 1

2 log p,
both algorithms discussed in [22, Alg. 1 and Alg. 3] to test supersingularity of a
public key EA do not work.

Note that these supersingular tests, verify whether #EA(Fp) = p + 1, by
showing that there is a point P with large enough order N | p+1. Both algorithms
start by sampling a random point P , followed by a multiplication by the cofactor
P ← [f]P , and then by checking whether the resulting point has ℓi-torsion.

14

This is done by calculating if [
∏

j ̸=i ℓj]P ̸= O and [
∏

ℓj]P = O. If the random
point P has ℓi-torsion for enough ℓi such that their product

∏
ℓi ≥ 4√p, then

in the Hasse interval p + 1 − 2√p ≤ #EA(Fp) ≤ p + 1 + 2√p, p + 1 is the
only possible multiple of its order ord(P). This implies that #EA(Fp) = p + 1.
Unfortunately, this approach cannot be applied to our setting, because for primes
where log f > 1

2 log p, even a point with ℓi-torsion for all i does not reach the
threshold 4√p, as log(

∏
ℓi) = log p − log f ≤ 1

2 log p. We conclude that due to
the large cofactors included in the primes targeted in this work, [22, Alg. 1 and
Alg. 3] cannot perform a sound supersingularity test within our setting.

Luckily, in the primes as above, where f = 2k, we can improve this algorithm
to verify supersingularity: Instead of verifying that the order of a random point
P has enough ℓi-torsion, we verify P has 2k-torsion. When log f = k > 1

2 log p,
verifying that P has 2k-torsion implies that EA must be supersingular by the
same logic as above. Furthermore, for Montgomery curves EA, we can sample
P directly from EA(Fp) \ [2]EA by picking a point with rational non-square
x-coordinate [27]. This ensures we always sample P with maximum 2k-torsion.
Using x-only arithmetic, we only have to keep track of xP . We name this approach
to verify supersingularity VeriFast, as described in Algorithm 2.

Algorithm 2 VeriFast: Supersingularity verification for primes with cofactor
2k > 4√p.
Input: A ∈ Fp defining a curve EA

Output: true or false, verifying the supersingularity of EA

1: xP ← 2, v2 ← 1
2: xP ← [p+1

f
]xP

3: while xP ̸= O and v2 < k do
4: xP ← xDBL(xP), v2 ← v2 + 1
5: end while
6: if v2 > 1 + log p/2 and xP = O then
7: return true
8: end if
9: return false

VeriFast can be performed deterministically or probabilistically: Given a point
with rational non-square x-coordinate, the algorithm always returns v2 = k in
case of supersingularity. Otherwise, any random point is likely to have v2 close to
k, and hence still verifies supersingularity if the cofactor is a few bits larger than
4√p. For the probabilistic approach, we pick xP = 2 ∈ Fp, hence P = (2,−),
for all supersingularity checks. This has the advantage that multiplication by
2 can be performed as a simple addition, and hence, xP = 2 optimizes the
arithmetic in the computation of xP ← [p+1

f]xP . Furthermore, the bound 4√p
can be improved to 2√p as this still implies p + 1 is the only multiple in the
Hasse interval. VeriFast is faster than any of the analyzed algorithms in [6], with
a cost of O(log p). More specifically, it requires a scalar multiplication by a scalar

15

of log p− k bits and (at most) k point doublings, where f = 2k is the cofactor. In
comparison to Doliskani’s test [6, 29], also of complexity O(log p), we have the
advantage that we can stay over Fp. The condition that f > 1 + log p/2 holds
for our primes p5120 and beyond. More importantly, even with the probabilistic
approach, for these primes the probability to sample a point that does not have
large enough 2z-torsion is lower than 2−256. For the primes where f ≤ 1+ log p/2,
we can still use the 2f -torsion, as in VeriFast, but we are required to also verify
some ℓi-torsion to cross the bound 2√p. A comparison of performance between
VeriFast and previous methods is given in Table 2, showing VeriFast is 28 to 38
times as fast for large primes.

Table 2: Benchmarking results for supersingularity verification using VeriFast
for primes with cofactor log f > 1

2 log p. Results of [24] added for comparison.
Numbers are median clock cycles (in gigacycles) of 1024 runs on a Skylake CPU.

p5120 p6144 p8192 p9216

VeriFast 0.53 0.81 1.88 2.54
SQALE [24] 14.90 27.65 67.79 96.99

4.2 Optimized dCSIDH public keys

As described in Section 3.2, dCSIDH is dummy-free and deterministic by using
secret key exponents ei ∈ {−1, 1}, and public keys of the form (A, T+, T−). Recall,
T+ and T− are full-torsion points that can be used to perform positive steps l+1

i

and negative steps l−1
i respectively. For sampling suitable points T+ and T− for

public keys during key generation, we use the Elligator map (A, u) 7→ (T+, T−)
from [23], with Montgomery parameter A ∈ Fp and an Elligator seed u ∈ Fp. The
output of Elligator is exactly such a pair of points T ′

+ and T ′
−, although they

might not be full-torsion, that is, their respective orders might not be divisible
by all ℓi. Let P be either T+ or T−. To efficiently determine if P is a full-torsion
point, we follow the usual product-tree approach that was also applied for public
key validation in [22]. This requires us to compute

[
p+1
ℓi

]
P for each ℓi, and

checking that these points are not equal to the point at infinity. In order to obtain
a deterministic algorithm, we try Elligator seeds from a pre-defined sequence
(u1, u2, . . .) until we find full-torsion points T+ and T−. To determine which of
the points T± is T+ resp. T−, Elligator requires a Legendre symbol computation.
In the case of our proposed dCSIDH configuration with public inputs A and u, we
can use a fast non-constant-time algorithm for the Legendre symbol computation
as the one presented in Hamburg [33].

Thus, a dCSIDH public key consists of an affine Montgomery coefficient A ∈ Fp,
and an Elligator seed u ∈ Fp such that elligator(A, u) returns two full-torsion

16

points T+ and T− on EA. We choose the fixed potential values for u small to get
a public key (A, u) of only log2(p) + ε bits for small ε > 0.

Finally, a user has to verify such a public key (A, u). For A, we verify EA

is supersingular as described in Section 4.1. For u, we verify that it generates
two full-torsion points T+ and T−, by ensuring at the computation of each step
l±1
i ∗ E that the correct multiple of both T+ and T− are not the point at infinity

(i.e., both have order ℓi) regardless of which point we use to compute the step.

Remark 1. An alternative to finding and including an Elligator seed u ∈ Fp in
the public key is to find and include small x-coordinates x+ and x− that define
full-torsion points T+ = (x+,−) and T− = (x−,−). Information-theoretically, u
and the pair (x+, x−) share similar probabilities (to generate full-torsion points)
and hence their bitlengths should be comparatively small. One advantage of x+
and x− is that they can be found individually, which should speed up their search.
We choose, however, the more succinct approach using u and Elligator.

5 Implementation

In this section, we describe the optimization steps at the level of field arithmetic
to speed up both variants of CSIDH we consider. First and foremost, to enable
a fair comparison, we implement a common code base for dCSIDH and CTIDH.
Besides sharing the same field arithmetic, both instantiations of CSIDH share all
the underlying functions required for computing the group action. However, some
required parameters and the strategy within the group action strongly differ
between dCSIDH and CTIDH. In the case of dCSIDH, the group action strategy
and all the required parameters are based on the implementation provided by [24].
In the case of CTIDH, we generate the batching and other parameters using the
methods provided by [5].

5.1 Low-level approaches for the field arithmetic layer

For the underlying field arithmetic, we implement three different approaches.
They all share the representation of integers in radix 264 and use Montgomery
arithmetic for efficient reductions modulo p.

1. To establish a performance baseline, our first method uses the low-level func-
tions for cryptography (mpn_sec_) of the GNU Multiple Precision Arithmetic
Library (GMP). Modular multiplication uses a combination of mpn_sec_mul
and mpn_add_n to implement Montgomery multiplication, i.e., interleaving
multiplication with reduction. We refer to this first approach as GMP.

2. The second approach extends the optimized arithmetic from [22], using the
MULX instruction, going from 512-bit and 1024-bit integers to the larger
sizes we consider in this paper. Here, we also interleave multiplication with
reduction; we generate code for all field sizes from a Python script. We refer
to this second approach as OpScan.

17

3. Our third strategy uses Karatsuba multiplication [36] together with the
MULX optimizations used in our second approach. We describe this strategy,
and in particular an optimized reduction for primes of 5120 bits and above,
in more detail in Section 5.2. We refer to this third approach as Karatsuba.

We follow the earlier optimization efforts for CSIDH from [5, 22, 24] and
focus on optimizing our code primarily on Intel’s Skylake microarchitecture. More
specifically, we perform all benchmarks on one core of an Intel Core E3-1260L
(Skylake) CPU with hyperthreading and TurboBoost disabled. An overview of
(modular) multiplication performance of the three approaches for the different
field sizes is given in Table 3. In the following, we will focus on describing the
fastest of the three strategies mentioned above, i.e., Karatsuba, in more detail.

5.2 Optimized field arithmetic using MULX and Karatsuba

We present scripts to generate optimized code using the Karatsuba approach,
based on the OpScan approach. More precisely, compared to the OpScan
approach, we achieve speedups for multiplication, squaring, and reduction.

Table 3: Benchmarking results for multiplication and reduction. Numbers are
median clock cycles of 100000 runs on a Skylake CPU. Note that for the OpScan
and the GMP approach, we can only provide clock cycles for multiplication
including reduction, due to the interleaved Montgomery reduction.

Prime GMP OpScan Karatsuba

mult + redc mult + redc mult redc mult + redc

p2048 8662 4538 1442 2648 4090
p4096 34 030 20 318 4981 9777 14 758
p5120 51 671 33 676 8601 6528 15 129
p6144 74 338 53 746 10 210 9517 19 727
p8192 131 858 92 793 17 073 17 295 34 268
p9216 168 375 118 302 20 248 19 709 39 957

Multiplication. The implementation of Karatsuba follows careful considera-
tions to optimize performance. To improve efficiency, we select a breakout level
into a MULX-based schoolbook multiplication with a maximum of 9× 9 limbs.
By choosing this threshold, the implementation aims to strike a balance between
utilizing the benefits of Karatsuba’s divide-and-conquer strategy and minimizing
the overhead of stack operations. This leads to the following number of layers
of Karatsuba: 2, 3, 4, 4, 4, and 4 for the cases p2048, p4096, p5120, p6144, p8192,
and p9216, respectively. To further enhance the speed of the implementation,

18

the assembly code avoids function calls. By generating the assembly code dy-
namically, the implementation can adapt to different prime sizes and adjust the
multiplication algorithm accordingly.

Squaring. For squaring, we take advantage of the fact that some partial products
(aiaj such that i ≠ j) only need to be calculated once, and then accumulated/used
twice. On the lowest level of Karatsuba, where the schoolbook multiplication
takes place, we implement a squaring function with the corresponding savings
based on lazy doubling method [43] by adapting the assembly code of the squaring
function of the GMP library. For a given n, the implemented method achieves
the lower bound of n2−n

2 + n required multiplications. Furthermore, we save
additions on the higher levels of Karatsuba by reusing calculated values. However,
as shown in Table 4, due to the chosen breakout into schoolbook multiplication
and the number of available registers, the effort for dealing with the carry chains
only leads to a maximum speedup of 17%. Adding a layer of Karatsuba to reduce
the number of limbs for the schoolbook multiplication leads to a speedup at this
level. Overall, however, extra layers negate speed-ups gained from reducing limbs.

Table 4: Benchmarking results for multiplication and squaring for the Karatsuba
approach. Numbers are median clock cycles of 100000 runs on a Skylake CPU.

Prime multiplication squaring

p2048 1442 1230
p4096 4981 4431
p5120 8601 7990
p6144 10 210 9120
p8192 17 073 15 050
p9216 20 248 19 197

Montgomery reduction. For the cases p ∈ {p5120, p6144, p8192, p9216}, the
reduction is calculated according to the intermediate Montgomery reduction [4].
For this, we use Montgomery-friendly primes of the form p = f ·

∏n
i=1 ℓi − 1 with

the cofactor f = 2e2 where e2 ≥ log2(p)/2. Table 1 shows the respective values
for f and accordingly e2 for all chosen prime numbers.

As shown in Algorithm 3, the basic idea of this reduction is to perform two
Montgomery-reduction steps modulo 2e2 instead of n steps modulo 2w as in
the standard Montgomery reduction. Based on this reduction approach, we can
further apply the available Karatsuba-based multiplication when calculating
q0 × α and q1 × α (see Line 2 and 4 in Algorithm 3), leading to further speedups.

For the cases p ∈ {p2048, p4096}, the respective primes cannot fulfill the
described requirements. Hence, we implement the word version of the Montgomery
reduction from [4] for these cases. The complexity of Algorithm 4 is dominated by
multiplications by α in Line 4. Compared to the standard Montgomery reduction,

19

Algorithm 3 Intermediate Montgomery reduction for p = 2e2α− 1 with e2 ≥
log2(p)/2
Input: 0 ≤ a < 2ep
Output: r = a2−2e2 mod p and 0 ≤ r < p
1: q0 ← a mod 2e2

2: r0 ← (a− q0)/2e2 + q0 × α ▷ 1st reduction
3: q1 ← r0 mod 2e2

4: r ← (r0 − q1)/2e2 + q1 × α ▷ 2nd reduction
5: r′ ← r − p + 2e

6: if r′ ≥ 2e then
7: r ← r′ mod 2e

8: end if
9: return r

this approach reduces the number of limbs to be multiplied depending on the
value of e2. We show the results for the corresponding reduction in Table 3.

Algorithm 4 Word version of the Montgomery reduction if p = 2e2α− 1
Input: 0 ≤ a < pβn

Output: r = aβ−n mod p and 0 ≤ r < p
1: r ← a
2: for i = 0 to n− 1 do
3: r0 ← r mod β
4: r ← (r − r0)/β + r0 × α2e2−w

5: end for
6: r′ ← r + (βn − p)
7: if r′ ≥ βn then
8: r ← r′ − β
9: end if

10: return r

5.3 Performance results

We demonstrate the performance increase due to the high-level improvements
from Section 4 and the low-level improvements from Section 5.2 for dCSIDH
and CTIDH in Table 5. We compare our results to [24], the only other available
implementation of CSIDH for similar parameters listing performance numbers.
For parameter sizes above p5120, our implementation of dCSIDH is between 55%
and 60% faster than SQALE (dummy-free), and CTIDH consistently achieves a
speed-up of almost 75% compared to SQALE (OAYT).

In [45], the authors proposed a novel approach for the computation of sums
of products over large prime fields achieving a significant performance impact.
However, since the primes in our work support very fast reductions, applying the

20

Table 5: Benchmarking results for performing a group action for dCSIDH and
CTIDH, excluding key validation. Results for the dummy-free and OAYT version
of [24] added for comparison. Numbers are median clock cycles (in gigacycles) of
1024 executions on a Skylake CPU.

p2048 p4096 p5120 p6144 p8192 p9216

dCSIDH 7.48 34.64 31.80 47.47 127.57 219.09
SQALE (dummy-free) – 39.35 73.57 117.57 322.57 475.64

CTIDH 2.21 11.11 11.26 17.13 43.65 68.78
SQALE (OAYT) – 23.21 44.56 74.88 199.15 292.41

approach from [45] would not gain a significant advantage. Further, a comparison
of the performance is unfortunately rather difficult due to the different underlying
fields.

6 Non-Interactive Key Exchange in Protocols

Diffie–Hellman (DH) key exchange is probably the most well-known example of
a NIKE protocol, even if it is often used as a “simple” interactive key exchange.
One such example is TLS, where ephemeral DH key exchange is authenticated
via a signature. This key exchange can be replaced with a KEM, as shown in [13].
Experiments by Google and Cloudflare [14, 41, 42] used the same approach.

However, in two scenarios the inherently interactive character of a KEM
creates issues for protocol designers. When used with long-term keys (and a
suitable PKI), a NIKE allows a user Alice to send an authenticated ciphertext to
an offline user Bob. Signal’s X3DH handshake [49] is a notable example using
this feature of NIKEs. Indeed, [15] shows that a naive replacement of the DH
operations by KEMs does not work.

In the early stages of the development of TLS 1.3, Krawczyk and Wee proposed
OPTLS [38], a variant that uses DH key exchange not only for ephemeral key
exchange, but also for authentication. Many elements of this proposal, made it
into the eventual RFC8446 [57]. Though the standard reverted to handshake
signatures, the idea lives on in an Internet Draft [58].

As Kuhnen pointed out, OPTLS does use the non-interactive property of
DH [39]. As part of the ephemeral key exchange, the client sends their ephemeral
DH public key. For authentication, the server takes this ephemeral key share and
combines it with their long-term DH key. The obtained shared secret is used to
compute a MAC which is used in place of the signature in the CertificateVerify
message. This computation proves the server’s possession of the long-term secret
key corresponding to the public key in the certificate. The client can compute the
same shared secret by combining its ephemeral secret DH key with the certified
public key, and thus verify the MAC.

21

6.1 Post-Quantum TLS without signatures

In a naive instantiation of an OPTLS-like protocol with KEMs, we require an
additional round-trip. To compute the authentication message, the server needs
to first receive the ciphertext that was encapsulated against the long-term public
key held in its certificate—which the client can not send before having received it
from the server. The KEMTLS proposal by Schwabe, Stebila, and Wiggers avoids
this issue partially by letting the client already transmit data immediately after
computing and sending the ciphertext to the server [61]. This relies on the fact
that any keys derived from the shared secret encapsulated to the server’s long
term key are implicitly authenticated. KEMTLS has the advantage of not having
to compute any typically expensive and/or large post-quantum signatures during
the handshake protocol. Only the variant that assumes the client already has
the server’s public key, for example through caching, can achieve a protocol flow
that is similar to OPTLS and TLS 1.3 [60]. In that flow, the server can send
authenticated data immediately on their first response to the client.

However, as CSIDH does provide post-quantum NIKE we can use it to
instantiate post-quantum OPTLS and avoid any online post-quantum signatures.
Because OPTLS immediately confirms the server’s authenticity, its handshake
has the same number of transmissions of messages as in TLS 1.3 and there is no
need to rely on implicit authentication.

Integrating our implementations in OPTLS gives us an understanding of
how CSIDH affects the performance of real-world network protocols, which will
typically feature similar cryptographic operations and transmissions.

6.2 Benchmarking set-up

Integration into Rustls. To investigate the performance of OPTLS with
CSIDH, we integrate our optimized implementations into the implementation
and the measurement framework of the authors of KEMTLS. As a side effect
of this work, we also provide a Rust wrapper around our C implementations.
We add OPTLS to the same modified version of Rustls [11] used to implement
KEMTLS. This allows us to straightforwardly compare to KEMTLS and TLS 1.3
handshakes instantiated with post-quantum primitives.

Group operations and caching ephemeral key generation. An OPTLS
handshake requires a large number of group operations in each handshake, namely:

1. Generation of the ephemeral key of the client;
2. Generation of the ephemeral key of the server;
3. The server’s computation of the ephemeral shared secret;
4. The client’s computation of the ephemeral shared secret;
5. The server’s computation of the authentication shared secret; and
6. The client’s computation of the authentication shared secret.

Unfortunately, due to the order of the handshake messages and the require-
ments for handshake encryption, most of these computations need to be done

22

in-order and can not really be parallelized. However, we can avoid the cost of
CSIDH key generation by implementing caching of ephemeral keys. This reduces
the forward secrecy; but it emulates a best-case scenario for CSIDH-based OPTLS
in which the keys are generated “offline”, outside the handshake context. We
exclude all first TLS handshakes from clients and servers from our measurements,
to exclude this key generation time: in the pregen OPTLS instances, all subse-
quent handshakes use the same public key material. In the ephemeral OPTLS
instances, we generate ephemeral keys in each handshake.

Note that because OPTLS combines the ephemeral and static keys, all need
to use the same algorithm, and we can not use a faster KEM for ephemeral key
exchange.
Measurement setup. We run all TLS handshake experiments on a server with
two Intel Xeon Gold 6230 CPUs, each featuring 20 physical cores. This gives
us 80 hyperthreaded cores in total. For these experiments, we do not disable
hyperthreading or frequency scaling, as these features would also be enabled in
production scenarios. We run 80 servers and clients in parallel, as each pair of
client and server roughly interleave their execution. We collect 8000 measurements
per experiment. Every 11 handshakes, we restart the client and server, so that
we measure many ephemeral keys even in the scenarios that use ephemeral-key
caching. We exclude the first handshake from the measurements to allow for
cache warm-up and ephemeral-key generation in the caching scenario.

As in the KEMTLS papers [60, 61], we measure the performance of the
different TLS handshakes when run over two network environments: a low-latency
30.9 ms round-trip time (RTT), 1000 Mbps and a high-latency 195.5 ms RTT,
10 Mbps network connection. The latency of the former represents a continental,
high-bandwidth connection, while the latter represents a transatlantic connection.

6.3 Benchmarking results
In Table 6, we compare OPTLS with dCSIDH and CTIDH with the performance
of instantiations of KEMTLS and TLS 1.3.

Comparing the sizes of the handshakes, OPTLS requires fewer bytes on the
wire, as it only needs to transmit two ephemeral public keys and one static public
key (and the CA signature). KEMTLS requires an additional ciphertext, and TLS
an additional signature.

In OPTLS, like in TLS 1.3, the client receives the server’s handshake comple-
tion message ServerFinished (SFIN) first and then sends the ClientFinished
(CFIN) message (and its request) immediately after. In KEMTLS, SFIN and full
server authentication is received a full round-trip after CFIN is received. However,
it is clear that the runtime requirements of dCSIDH are almost insurmountable,
even for the smallest parameters (p2048). Even CTIDH, which is much more
efficient, is orders of magnitude slower than the KEMTLS and OPTLS instances.
If the more conservative p4096 prime is required for NIST level 1 security, even
CTIDH handshakes do not complete in under 30 seconds. Due to a better re-
duction algorithm, the p5120 prime performs roughly on par with p4096, while
providing NIST level 2 security in the aggressive analysis.

23

Table 6: Public key cryptography transmission sizes in bytes and time in seconds
until client receives and sends Finished messages for OPTLS, TLS 1.3 and
KEMTLS.

Handshake latencies (RTT, link speed)
Transmission 30.9 ms, 1000 Mbps 195.5 ms, 10 Mbps
KEX Auth SFIN recv CFIN sent SFIN recv CFIN sent

OPTLS
(pregen)

dCSIDH p2048 544 938 24.468 24.468 24.288 24.288
CTIDH p2048 512 922 7.346 7.346 7.203 7.203
CTIDH p4096 1024 1178 36.321 36.321 36.299 36.299
CTIDH p5120 1280 1306 28.701 28.701 28.580 28.580

OPTLS
(ephemeral)

dCSIDH p2048 544 938 43.642 43.642 43.486 43.486
CTIDH p2048 512 922 10.042 10.042 9.882 9.882
CTIDH p4096 1024 1178 50.039 50.039 49.951 49.951
CTIDH p5120 1280 1306 42.383 42.383 42.163 42.163

TLS
Kyber512–Falcon512 1568 2229 0.064 0.064 0.428 0.428
Kyber512–Dilithium2 1568 4398 0.063 0.063 0.519 0.519
Kyber768–Falcon1024 2272 3739 0.065 0.065 0.497 0.497

KEMTLS Kyber512 1568 2234 0.094 0.063 0.593 0.396
Kyber768 2272 2938 0.094 0.063 0.597 0.400

All instantiations use Falcon-512 for the certificate authority; the CA public key is not transmitted.
Bytes necessary for authentication includes 666 bytes for the Falcon-512 CA signature on the server’s

certificate.

As discussed for (KEM)TLS in [32], for constrained environments, such as
46 kbps IoT networks, in certain scenarios the transmission size can become the
dominant factor instead of computation time. However, with the results shown
here, we expect the environments in which CSIDH-based OPTLS instances are
competitive to be very niche. To overcome 7 seconds of computational latency,
the network needs to take more than 7 seconds to transmit the additional
data required for e.g. TLS 1.3 with Dilithium. This suggests link speeds of
less than 1 kilobyte per second. Additionally, these environments often rely on
microcontrollers that are much less performant than the Intel CPUs on which we
run our implementations.

Interestingly, the CSIDH experiments run on the high-latency, low-bandwidth
networks show slightly lower latencies than those on the high-bandwidth, low-
latency network. We suspect that this is due to an interaction with the TCP
congestion control algorithm’s transmission windows.

7 Conclusion and future work

In this paper, we presented low-level and high-level optimizations for CSIDH
at larger parameter sets, focusing on deterministic and dummy-free behavior
in dCSIDH, and on speed in CTIDH. These optimizations achieve impressive
results on their own; dCSIDH is almost twice as fast as the state-of-the-art, and
CTIDH, dropping determinism, is again three times as fast as dCSIDH. Further

24

optimizations of the field arithmetic, i.e., by utilizing the vector processing
capabilities of modern processors, might lead to additional speed-ups.

Nevertheless, when integrated into the latency-sensitive TLS variant OPTLS,
both implementations still have too-large handshake latency in comparison to
TLS or KEMTLS using lattice-based KEMs. We conclude that the reduced
number of roundtrips, through the non-interactive nature of CSIDH, does not
make up for the performance hit.

However, for truly non-interactive, latency-insensitive settings that cannot
replace NIKEs by KEMs, the performance of CSIDH may be sufficient even at
high-security levels. This includes, for example, using CSIDH in X3DH [49] for
post-quantum Signal, as it would incur a delay of seconds only when sending the
first message to another user (who might be offline, thus ruling out KEM-based
interactive approaches).

Unless significant performance improvements occur for CSIDH in large pa-
rameter sets, or the quantum-security debate shifts in favor of 512- to 1024-bits
parameter sets, we conclude that CSIDH is unlikely to be practical in real-world
applications, outside of those that specifically require NIKEs.

It will be interesting to investigate how CSIDH and Swoosh—the only two
current proposals for a post-quantum NIKE—compare in a protocol context.
There is no full implementation of Swoosh, yet; the cycle counts reported in [30]
are for the passively-secure core component only. Based on the available figures
it seems likely that Swoosh outperforms CSIDH with the large parameters we
consider in this paper computationally, but that key sizes are much smaller for
CSIDH.

References

[1] Gora Adj, Jesús-Javier Chi-Domínguez, and Francisco Rodríguez-Henríquez.
“Karatsuba-based square-root Vélu’s formulas applied to two isogeny-based
protocols”. In: Journal of Cryptographic Engineering (2022). doi: 10.1007/
s13389-022-00293-y. url: https://doi.org/10.1007/s13389-022-
00293-y.

[2] Yawning Angel, Benjamin Dowling, Andreas Hülsing, Peter Schwabe, and
Florian Weber. “Post Quantum Noise”. In: ACM CCS 2022. Ed. by Heng
Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi. ACM Press, Nov. 2022,
pp. 97–109. doi: 10.1145/3548606.3560577.

[3] Reza Azarderakhsh, David Jao, and Christopher Leonardi. “Post-Quantum
Static-Static Key Agreement Using Multiple Protocol Instances”. In: SAC
2017. Ed. by Carlisle Adams and Jan Camenisch. Vol. 10719. LNCS.
Springer, Heidelberg, Aug. 2017, pp. 45–63. doi: 10.1007/978-3-319-
72565-9_3.

[4] Jean-Claude Bajard and Sylvain Duquesne. “Montgomery-friendly primes
and applications to cryptography”. In: Journal of Cryptographic Engineering
11.4 (Nov. 2021), pp. 399–415. doi: 10.1007/s13389-021-00260-z.

25

https://doi.org/10.1007/s13389-022-00293-y
https://doi.org/10.1007/s13389-022-00293-y
https://doi.org/10.1007/s13389-022-00293-y
https://doi.org/10.1007/s13389-022-00293-y
https://doi.org/10.1145/3548606.3560577
https://doi.org/10.1007/978-3-319-72565-9_3
https://doi.org/10.1007/978-3-319-72565-9_3
https://doi.org/10.1007/s13389-021-00260-z

[5] Gustavo Banegas, Daniel J. Bernstein, Fabio Campos, Tung Chou, Tanja
Lange, Michael Meyer, Benjamin Smith, and Jana Sotáková. “CTIDH:
faster constant-time CSIDH”. In: IACR TCHES 2021.4 (2021). https:
//tches.iacr.org/index.php/TCHES/article/view/9069, pp. 351–387.
issn: 2569-2925. doi: 10.46586/tches.v2021.i4.351-387.

[6] Gustavo Banegas, Valerie Gilchrist, and Benjamin Smith. Efficient super-
singularity testing over Fp and CSIDH key validation. Cryptology ePrint
Archive, Report 2022/880. https://eprint.iacr.org/2022/880. 2022.

[7] Gustavo Banegas, Juliane Krämer, Tanja Lange, Michael Meyer, Lorenz
Panny, Krijn Reijnders, Jana Sotáková, and Monika Trimoska. Disori-
entation faults in CSIDH. Cryptology ePrint Archive, Report 2022/1202.
https://eprint.iacr.org/2022/1202. 2022.

[8] Daniel J. Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith.
“Faster computation of isogenies of large prime degree”. In: ANTS XIV
– Proceedings of the Fourteenth Algorithmic Number Theory Symposium.
https://msp.org/obs/2020/4-1/obs-v4-n1-p04-p.pdf. MSP, 2020.

[9] Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny.
“Quantum Circuits for the CSIDH: Optimizing Quantum Evaluation of
Isogenies”. In: EUROCRYPT 2019, Part II. Ed. by Yuval Ishai and Vincent
Rijmen. Vol. 11477. LNCS. Springer, Heidelberg, May 2019, pp. 409–441.
doi: 10.1007/978-3-030-17656-3_15.

[10] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. “CSI-FiSh:
Efficient Isogeny Based Signatures Through Class Group Computations”.
In: ASIACRYPT 2019, Part I. Ed. by Steven D. Galbraith and Shiho
Moriai. Vol. 11921. LNCS. Springer, Heidelberg, Dec. 2019, pp. 227–247.
doi: 10.1007/978-3-030-34578-5_9.

[11] Joseph Birr-Pixton. A modern TLS library in Rust. https://github.com/
rustls/rustls (accessed 2021-12-20).

[12] Xavier Bonnetain and André Schrottenloher. “Quantum Security Analysis
of CSIDH”. In: EUROCRYPT 2020, Part II. Ed. by Anne Canteaut and
Yuval Ishai. Vol. 12106. LNCS. Springer, Heidelberg, May 2020, pp. 493–
522. doi: 10.1007/978-3-030-45724-2_17.

[13] Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. “Post-
Quantum Key Exchange for the TLS Protocol from the Ring Learning
with Errors Problem”. In: 2015 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, May 2015, pp. 553–570. doi: 10.1109/SP.
2015.40.

[14] Matt Braithwaite. Experimenting with Post-Quantum Cryptography. Google
Online Security Blog. https://security.googleblog.com/2016/07/
experimenting-with-post-quantum.html (accessed 2021-12-20). 2016.

[15] Jacqueline Brendel, Marc Fischlin, Felix Günther, Christian Janson, and
Douglas Stebila. “Towards Post-Quantum Security for Signal’s X3DH
Handshake”. In: SAC 2020. Ed. by Orr Dunkelman, Michael J. Jacobson
Jr., and Colin O’Flynn. Vol. 12804. LNCS. Springer, Heidelberg, Oct. 2020,
pp. 404–430. doi: 10.1007/978-3-030-81652-0_16.

26

https://tches.iacr.org/index.php/TCHES/article/view/9069
https://tches.iacr.org/index.php/TCHES/article/view/9069
https://doi.org/10.46586/tches.v2021.i4.351-387
https://eprint.iacr.org/2022/880
https://eprint.iacr.org/2022/1202
https://msp.org/obs/2020/4-1/obs-v4-n1-p04-p.pdf
https://doi.org/10.1007/978-3-030-17656-3_15
https://doi.org/10.1007/978-3-030-34578-5_9
https://github.com/rustls/rustls
https://github.com/rustls/rustls
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1109/SP.2015.40
https://doi.org/10.1109/SP.2015.40
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://doi.org/10.1007/978-3-030-81652-0_16

[16] Fabio Campos, Matthias J. Kannwischer, Michael Meyer, Hiroshi Onuki,
and Marc Stöttinger. “Trouble at the CSIDH: Protecting CSIDH with
Dummy-Operations Against Fault Injection Attacks”. In: 2020 Workshop
on Fault Detection and Tolerance in Cryptography (FDTC). IEEE, 2020,
pp. 57–65. doi: 10.1109/FDTC51366.2020.00015.

[17] Fabio Campos, Michael Meyer, Krijn Reijnders, and Marc Stöttinger.
Patient Zero and Patient Six: Zero-Value and Correlation Attacks on
CSIDH and SIKE. IACR Cryptology ePrint Archive, Report 2022/904. To
appear in SAC 2022. 2022. url: https://eprint.iacr.org/2022/904.

[18] Wouter Castryck and Thomas Decru. “An Efficient Key Recovery Attack on
SIDH”. In: EUROCRYPT 2023, Part V. Ed. by Carmit Hazay and Martijn
Stam. Vol. 14008. LNCS. Springer, Heidelberg, Apr. 2023, pp. 423–447.
doi: 10.1007/978-3-031-30589-4_15.

[19] Wouter Castryck and Thomas Decru. “CSIDH on the Surface”. In: Post-
Quantum Cryptography - 11th International Conference, PQCrypto 2020.
Ed. by Jintai Ding and Jean-Pierre Tillich. Springer, Heidelberg, 2020,
pp. 111–129. doi: 10.1007/978-3-030-44223-1_7.

[20] Wouter Castryck, Thomas Decru, Marc Houben, and Frederik Vercauteren.
“Horizontal Racewalking Using Radical Isogenies”. In: ASIACRYPT 2022,
Part II. Ed. by Shweta Agrawal and Dongdai Lin. Vol. 13792. LNCS.
Springer, Heidelberg, Dec. 2022, pp. 67–96. doi: 10.1007/978-3-031-
22966-4_3.

[21] Wouter Castryck, Thomas Decru, and Frederik Vercauteren. “Radical Iso-
genies”. In: ASIACRYPT 2020, Part II. Ed. by Shiho Moriai and Huaxiong
Wang. Vol. 12492. LNCS. Springer, Heidelberg, Dec. 2020, pp. 493–519.
doi: 10.1007/978-3-030-64834-3_17.

[22] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and
Joost Renes. “CSIDH: An Efficient Post-Quantum Commutative Group
Action”. In: ASIACRYPT 2018, Part III. Ed. by Thomas Peyrin and Steven
Galbraith. Vol. 11274. LNCS. Springer, Heidelberg, Dec. 2018, pp. 395–427.
doi: 10.1007/978-3-030-03332-3_15.

[23] Daniel Cervantes-Vázquez, Mathilde Chenu, Jesús-Javier Chi-Domínguez,
Luca De Feo, Francisco Rodríguez-Henríquez, and Benjamin Smith.
“Stronger and Faster Side-Channel Protections for CSIDH”. In: LAT-
INCRYPT 2019. Ed. by Peter Schwabe and Nicolas Thériault. Vol. 11774.
LNCS. Springer, Heidelberg, Oct. 2019, pp. 173–193. doi: 10.1007/978-
3-030-30530-7_9.

[24] Jorge Chávez-Saab, Jesús-Javier Chi-Domínguez, Samuel Jaques, and
Francisco Rodríguez-Henríquez. “The SQALE of CSIDH: sublinear Vélu
quantum-resistant isogeny action with low exponents”. In: Journal of
Cryptographic Engineering 12.3 (Sept. 2022), pp. 349–368. doi: 10.1007/
s13389-021-00271-w.

[25] Jesús-Javier Chi-Domínguez and Krijn Reijnders. “Fully Projective Radical
Isogenies in Constant-Time”. In: CT-RSA 2022. Ed. by Steven D. Galbraith.

27

https://doi.org/10.1109/FDTC51366.2020.00015
https://eprint.iacr.org/2022/904
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1007/978-3-030-44223-1_7
https://doi.org/10.1007/978-3-031-22966-4_3
https://doi.org/10.1007/978-3-031-22966-4_3
https://doi.org/10.1007/978-3-030-64834-3_17
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-30530-7_9
https://doi.org/10.1007/978-3-030-30530-7_9
https://doi.org/10.1007/s13389-021-00271-w
https://doi.org/10.1007/s13389-021-00271-w

Vol. 13161. LNCS. Springer, Heidelberg, Mar. 2022, pp. 73–95. doi: 10.
1007/978-3-030-95312-6_4.

[26] Jesús-Javier Chi-Domínguez and Francisco Rodríguez-Henríquez. “Optimal
strategies for CSIDH”. In: Adv. Math. Commun. 16.2 (2022), pp. 383–411.
doi: 10.3934/amc.2020116. url: https://doi.org/10.3934/amc.
2020116.

[27] Craig Costello, David Jao, Patrick Longa, Michael Naehrig, Joost Renes,
and David Urbanik. “Efficient Compression of SIDH Public Keys”. In:
EUROCRYPT 2017, Part I. Ed. by Jean-Sébastien Coron and Jesper Buus
Nielsen. Vol. 10210. LNCS. Springer, Heidelberg, 2017, pp. 679–706. doi:
10.1007/978-3-319-56620-7_24.

[28] Craig Costello, Patrick Longa, and Michael Naehrig. “Efficient Algorithms
for Supersingular Isogeny Diffie-Hellman”. In: CRYPTO 2016, Part I. Ed.
by Matthew Robshaw and Jonathan Katz. Vol. 9814. LNCS. Springer,
Heidelberg, Aug. 2016, pp. 572–601. doi: 10.1007/978-3-662-53018-
4_21.

[29] Javad Doliskani. “On division polynomial PIT and supersingularity”. In:
Applicable Algebra in Engineering, Communication and Computing 29.5
(2018), pp. 393–407.

[30] Phillip Gajland, Bor de Kock, Miguel Quaresma, Giulio Malavolta, and
Peter Schwabe. Swoosh: Practical Lattice-Based Non-Interactive Key Ex-
change. Cryptology ePrint Archive, Report 2023/271. https://eprint.
iacr.org/2023/271. 2023.

[31] Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. “On the
Security of Supersingular Isogeny Cryptosystems”. In: ASIACRYPT 2016,
Part I. Ed. by Jung Hee Cheon and Tsuyoshi Takagi. Vol. 10031. LNCS.
Springer, Heidelberg, Dec. 2016, pp. 63–91. doi: 10.1007/978-3-662-
53887-6_3.

[32] Ruben Gonzalez and Thom Wiggers. “KEMTLS vs. Post-quantum TLS:
Performance on Embedded Systems”. In: Security, Privacy, and Applied
Cryptography Engineering. Ed. by Lejla Batina, Stjepan Picek, and Mainack
Mondal. Cham: Springer Nature Switzerland, 2022, pp. 99–117. isbn:
978-3-031-22829-2. doi: 10.1007/978- 3- 031- 22829- 2. url: https:
//thomwiggers.nl/publication/kemtls-embedded/.

[33] Mike Hamburg. Computing the Jacobi symbol using Bernstein-Yang. Cryp-
tology ePrint Archive, Report 2021/1271. https://eprint.iacr.org/
2021/1271. 2021.

[34] Aaron Hutchinson, Jason T. LeGrow, Brian Koziel, and Reza Azarderakhsh.
“Further Optimizations of CSIDH: A Systematic Approach to Efficient
Strategies, Permutations, and Bound Vectors”. In: ACNS 20, Part I. Ed. by
Mauro Conti, Jianying Zhou, Emiliano Casalicchio, and Angelo Spognardi.
Vol. 12146. LNCS. Springer, Heidelberg, Oct. 2020, pp. 481–501. doi:
10.1007/978-3-030-57808-4_24.

[35] David Jao and Luca De Feo. “Towards Quantum-Resistant Cryptosystems
from Supersingular Elliptic Curve Isogenies”. In: Post-Quantum Cryptogra-

28

https://doi.org/10.1007/978-3-030-95312-6_4
https://doi.org/10.1007/978-3-030-95312-6_4
https://doi.org/10.3934/amc.2020116
https://doi.org/10.3934/amc.2020116
https://doi.org/10.3934/amc.2020116
https://doi.org/10.1007/978-3-319-56620-7_24
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-662-53018-4_21
https://eprint.iacr.org/2023/271
https://eprint.iacr.org/2023/271
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-031-22829-2
https://thomwiggers.nl/publication/kemtls-embedded/
https://thomwiggers.nl/publication/kemtls-embedded/
https://eprint.iacr.org/2021/1271
https://eprint.iacr.org/2021/1271
https://doi.org/10.1007/978-3-030-57808-4_24

phy - 4th International Workshop, PQCrypto 2011. Ed. by Bo-Yin Yang.
Springer, Heidelberg, 2011, pp. 19–34. doi: 10.1007/978-3-642-25405-
5_2.

[36] Anatolii Karatsuba and Yuri Ofman. “Multiplication of multidigit numbers
on automata”. In: Soviet Physics Doklady 7 (1963). Translated from Doklady
Akademii Nauk SSSR, Vol. 145, No. 2, pp. 293–294, July 1962., pp. 595–596.

[37] Bor de Kock. A non-interactive key exchange based on ring-learning with
errors. Master’s thesis, Eindhoven University of Technology. 2018.

[38] Hugo Krawczyk and Hoeteck Wee. “The OPTLS Protocol and TLS 1.3”.
In: 2016 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 2016, pp. 81–96. doi: 10.1109/EuroSP.2016.18.

[39] Wouter Kuhnen. “OPTLS revisited”. https://www.ru.nl/publish/
pages/769526/thesis-final.pdf. MA thesis. Radboud University, 2018.

[40] Greg Kuperberg. “Another Subexponential-time Quantum Algorithm for
the Dihedral Hidden Subgroup Problem”. In: 8th Conference on the The-
ory of Quantum Computation, Communication and Cryptography. Ed.
by Simone Severini and Fernando G. S. L. Brandão. Vol. 22. LIPIcs 22.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2013, pp. 20–34. doi:
10.4230/LIPIcs.TQC.2013.20.

[41] Kris Kwiatkowski and Luke Valenta. The TLS Post-Quantum Experi-
ment. Cloudflare blog. https://blog.cloudflare.com/the-tls-post-
quantum-experiment/ (accessed 2022-01-06). 2019.

[42] Adam Langley. CECPQ2. ImperialViolet blog. https : / / www .
imperialviolet.org/2018/12/12/cecpq2.html (accessed 2021-12-20).
2018.

[43] Younho Lee, Il-Hee Kim, and Yongsu Park. “Improved multi-precision
squaring for low-end RISC microcontrollers”. In: J. Syst. Softw. 86.1 (2013),
pp. 60–71. doi: 10.1016/j.jss.2012.06.074. url: https://doi.org/
10.1016/j.jss.2012.06.074.

[44] Jason LeGrow and Aaron Hutchinson. An Analysis of Fault Attacks on
CSIDH. Cryptology ePrint Archive, Report 2020/1006. https://eprint.
iacr.org/2020/1006. 2020.

[45] Patrick Longa. “Efficient Algorithms for Large Prime Characteristic Fields
and Their Application to Bilinear Pairings”. In: IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2023.3 (2023), pp. 445–472. doi: 10.46586/tches.
v2023.i3.445-472. url: https://doi.org/10.46586/tches.v2023.i3.
445-472.

[46] Vadim Lyubashevsky. Converting NewHope/LWE key exchange to a Diffe-
Hellman-like algorithm. Crypto Stack Exchange. [Online:] https://crypto.
stackexchange.com/questions/48146/converting-newhope-lwe-key-
exchange-to-a-diffe-hellman-like-algorithm. 2017. url: https://
crypto.stackexchange.com/questions/48146/converting-newhope-
lwe-key-exchange-to-a-diffe-hellman-like-algorithm (visited on
06/10/2017).

29

https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1109/EuroSP.2016.18
https://www.ru.nl/publish/pages/769526/thesis-final.pdf
https://www.ru.nl/publish/pages/769526/thesis-final.pdf
https://doi.org/10.4230/LIPIcs.TQC.2013.20
https://blog.cloudflare.com/the-tls-post-quantum-experiment/
https://blog.cloudflare.com/the-tls-post-quantum-experiment/
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://doi.org/10.1016/j.jss.2012.06.074
https://doi.org/10.1016/j.jss.2012.06.074
https://doi.org/10.1016/j.jss.2012.06.074
https://eprint.iacr.org/2020/1006
https://eprint.iacr.org/2020/1006
https://doi.org/10.46586/tches.v2023.i3.445-472
https://doi.org/10.46586/tches.v2023.i3.445-472
https://doi.org/10.46586/tches.v2023.i3.445-472
https://doi.org/10.46586/tches.v2023.i3.445-472
https://crypto.stackexchange.com/questions/48146/converting-newhope-lwe-key-exchange-to-a-diffe-hellman-like-algorithm
https://crypto.stackexchange.com/questions/48146/converting-newhope-lwe-key-exchange-to-a-diffe-hellman-like-algorithm
https://crypto.stackexchange.com/questions/48146/converting-newhope-lwe-key-exchange-to-a-diffe-hellman-like-algorithm
https://crypto.stackexchange.com/questions/48146/converting-newhope-lwe-key-exchange-to-a-diffe-hellman-like-algorithm
https://crypto.stackexchange.com/questions/48146/converting-newhope-lwe-key-exchange-to-a-diffe-hellman-like-algorithm
https://crypto.stackexchange.com/questions/48146/converting-newhope-lwe-key-exchange-to-a-diffe-hellman-like-algorithm

[47] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Pe-
ter Schwabe, Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-
DILITHIUM. Tech. rep. available at https://csrc.nist.gov/Projects/
post- quantum- cryptography/selected- algorithms- 2022. National
Institute of Standards and Technology, 2022.

[48] Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, and
Benjamin Wesolowski. “A Direct Key Recovery Attack on SIDH”. In:
EUROCRYPT 2023, Part V. Ed. by Carmit Hazay and Martijn Stam.
Vol. 14008. LNCS. Springer, Heidelberg, Apr. 2023, pp. 448–471. doi:
10.1007/978-3-031-30589-4_16.

[49] Moxie Marlinspike and Trevor Perrin. The X3DH Key Agreement Protocol.
Signal Specifications. https://signal.org/docs/specifications/x3dh/
(accessed2022-01-04). 2016.

[50] Michael Meyer, Fabio Campos, and Steffen Reith. “On Lions and Elligators:
An Efficient Constant-Time Implementation of CSIDH”. In: Post-Quantum
Cryptography - 10th International Conference, PQCrypto 2019. Ed. by
Jintai Ding and Rainer Steinwandt. Springer, Heidelberg, 2019, pp. 307–
325. doi: 10.1007/978-3-030-25510-7_17.

[51] Michael Meyer and Steffen Reith. “A Faster Way to the CSIDH”. In: IN-
DOCRYPT 2018. Ed. by Debrup Chakraborty and Tetsu Iwata. Vol. 11356.
LNCS. Springer, Heidelberg, Dec. 2018, pp. 137–152. doi: 10.1007/978-
3-030-05378-9_8.

[52] Tomoki Moriya, Hiroshi Onuki, and Tsuyoshi Takagi. “How to Construct
CSIDH on Edwards Curves”. In: CT-RSA 2020. Ed. by Stanislaw Jarecki.
Vol. 12006. LNCS. Springer, Heidelberg, Feb. 2020, pp. 512–537. doi:
10.1007/978-3-030-40186-3_22.

[53] NIST. Post-Quantum Cryptography Standardization. 2017 (last mod-
ified Dec 2, 2021). url: https : / / csrc . nist . gov / Projects /
post - quantum - cryptography / post - quantum - cryptography -
standardization(accessed2022-01-04).

[54] Hiroshi Onuki, Yusuke Aikawa, Tsutomu Yamazaki, and Tsuyoshi Takagi.
“(Short Paper) A Faster Constant-Time Algorithm of CSIDH Keeping
Two Points”. In: IWSEC 19. Ed. by Nuttapong Attrapadung and Takeshi
Yagi. Vol. 11689. LNCS. Springer, Heidelberg, Aug. 2019, pp. 23–33. doi:
10.1007/978-3-030-26834-3_2.

[55] Chris Peikert. “He Gives C-Sieves on the CSIDH”. In: EUROCRYPT 2020,
Part II. Ed. by Anne Canteaut and Yuval Ishai. Vol. 12106. LNCS. Springer,
Heidelberg, May 2020, pp. 463–492. doi: 10.1007/978-3-030-45724-
2_16.

[56] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim
Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. FALCON. Tech. rep. available at https://
csrc.nist.gov/Projects/post- quantum- cryptography/selected-
algorithms-2022. National Institute of Standards and Technology, 2022.

30

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1007/978-3-031-30589-4_16
https://signal.org/docs/specifications/x3dh/ (accessed 2022-01-04)
https://signal.org/docs/specifications/x3dh/ (accessed 2022-01-04)
https://doi.org/10.1007/978-3-030-25510-7_17
https://doi.org/10.1007/978-3-030-05378-9_8
https://doi.org/10.1007/978-3-030-05378-9_8
https://doi.org/10.1007/978-3-030-40186-3_22
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization (accessed 2022-01-04)
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization (accessed 2022-01-04)
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization (accessed 2022-01-04)
https://doi.org/10.1007/978-3-030-26834-3_2
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-030-45724-2_16
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

[57] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3.
IETF RFC 8446. https://rfc-editor.org/rfc/rfc8446.txt. 2018.

[58] Eric Rescorla, Nick Sullivan, and Christopher A. Wood. Semi-Static Diffie-
Hellman Key Establishment for TLS 1.3. Internet-Draft draft-ietf-tls-
semistatic-dh-01. Work in Progress. Internet Engineering Task Force, Mar.
2020. 7 pp. url: https://datatracker.ietf.org/doc/draft-ietf-
tls-semistatic-dh/01/.

[59] Damien Robert. “Breaking SIDH in Polynomial Time”. In: EURO-
CRYPT 2023, Part V. Ed. by Carmit Hazay and Martijn Stam. Vol. 14008.
LNCS. Springer, Heidelberg, Apr. 2023, pp. 472–503. doi: 10.1007/978-
3-031-30589-4_17.

[60] Peter Schwabe, Douglas Stebila, and Thom Wiggers. “More Efficient Post-
quantum KEMTLS with Pre-distributed Public Keys”. In: ESORICS 2021,
Part I. Ed. by Elisa Bertino, Haya Shulman, and Michael Waidner.
Vol. 12972. LNCS. Springer, Heidelberg, Oct. 2021, pp. 3–22. doi: 10.
1007/978-3-030-88418-5_1.

[61] Peter Schwabe, Douglas Stebila, and Thom Wiggers. “Post-Quantum TLS
Without Handshake Signatures”. In: ACM CCS 2020. Ed. by Jay Ligatti,
Xinming Ou, Jonathan Katz, and Giovanni Vigna. ACM Press, Nov. 2020,
pp. 1461–1480. doi: 10.1145/3372297.3423350.

[62] Paul C. van Oorschot and Michael J. Wiener. “Parallel Collision Search
with Cryptanalytic Applications”. In: Journal of Cryptology 12.1 (Jan.
1999), pp. 1–28. doi: 10.1007/PL00003816.

[63] Jacques Vélu. “Isogénies entre courbes elliptiques”. In: Comptes Rendus de
l’Académie des Sciences de Paris, Séries A 273 (1971), pp. 238–241.

[64] Bas Westerbaan and Cefan Daniel Rubin. Defending against future threats:
Cloudflare goes post-quantum. Cloudflare blog. https://blog.cloudflare.
com/post-quantum-for-all/. 2022.

31

https://rfc-editor.org/rfc/rfc8446.txt
https://datatracker.ietf.org/doc/draft-ietf-tls-semistatic-dh/01/
https://datatracker.ietf.org/doc/draft-ietf-tls-semistatic-dh/01/
https://doi.org/10.1007/978-3-031-30589-4_17
https://doi.org/10.1007/978-3-031-30589-4_17
https://doi.org/10.1007/978-3-030-88418-5_1
https://doi.org/10.1007/978-3-030-88418-5_1
https://doi.org/10.1145/3372297.3423350
https://doi.org/10.1007/PL00003816
https://blog.cloudflare.com/post-quantum-for-all/
https://blog.cloudflare.com/post-quantum-for-all/

	Optimizations and Practicality of High-Security CSIDH
	Introduction
	Preliminaries
	NIKEs vs. KEMs
	The CSIDH NIKE
	CTIDH
	Quantum security

	Proposed instantiations of CSIDH
	The choice of p
	Parameters for dummy-free, deterministic dCSIDH
	Parameters for CTIDH

	Optimizing dCSIDH and CTIDH
	Supersingularity verification
	Optimized dCSIDH public keys

	Implementation
	Low-level approaches for the field arithmetic layer
	Optimized field arithmetic using MULX and Karatsuba
	Performance results

	Non-Interactive Key Exchange in Protocols
	Post-Quantum TLS without signatures
	Benchmarking set-up
	Benchmarking results

	Conclusion and future work

