
Public - Copyright PQShield Ltd - CC BY-SA 1

Transport Layer Security
Thom Wiggers

Applied Cryptography guest lecture.

Public - Copyright PQShield Ltd - CC BY-SA 2

Public - Copyright PQShield Ltd - CC BY-SA 3

“TLS allows client/server applications to
communicate over the Internet in a way that
is designed to prevent eavesdropping,
tampering, and message forgery.”

RFC 8446: The Transport Layer Security (TLS) Protocol Version 1.3

Public - Copyright PQShield Ltd - CC BY-SA X

> 94,5 %
of US Firefox page loads use TLS

Firefox Telemetry, 2024-04-23

Public - Copyright PQShield Ltd - CC BY-SA 4

TLS

Public - Copyright PQShield Ltd - CC BY-SA 5

Imagine it’s 1997
1. You want to set up a web shop
2. You need to process credit card information

a. If bad guys obtain a credit card number…
3. You are advertising in newspapers

a. You can hardly distribute key material beforehand

Public - Copyright PQShield Ltd - CC BY-SA 6

TLS Handshake Requirements
❏ Set up a shared secret key for encrypting application traffic
❏ Transmit the identity and key material during the protocol handshake

❏ Don’t require prior knowledge of the server
❏ Be secure

Public - Copyright PQShield Ltd - CC BY-SA 7

TLS Version history

● 1995: SSL 2.0 (“Secure Sockets Layer”) ☠ (insecure)

● 1996: SSL 3.0 update ☠ (insecure)

● Already fixes many problems in 2.0

● 1999: TLS 1.0 📛 (deprecated)

● 2006: TLS 1.1 📛 (deprecated)

● 2008: TLS 1.2 (okay with the right config)
● 2018: TLS 1.3

Public - Copyright PQShield Ltd - CC BY-SA 8

TLS 1.2 and earlier

Public - Copyright PQShield Ltd - CC BY-SA 9

TLS 1.2 problems
● Too many round-trips
● Certificates are sent in the clear

● Everybody can see you’re connecting to wggrs.nl
● Especially problematic for client authentication

● A lot of legacy cryptography and patches against attacks

http://wggrs.nl
http://wggrs.nl

Public - Copyright PQShield Ltd - CC BY-SA X

Attacks on TLS (subset)
● 1998, 2006: Bleichenbacher breaks RSA encryption and RSA signatures using errors as side-channel
● 2011: BEAST: breaks SSL 3.0 and TLS 1.0 (nobody was using TLS 1.1 (2006) or 1.2 (2008)…)

● avoid attack by using RC4 (but since 2013 RC4 is considered ☠ …)

● 2012/2013: CRIME / BREACH: compression in TLS is bad
● 2013: Lucky Thirteen: timing attack on encrypt-then-MAC
● 2014: POODLE: destroys SSL 3.0
● 2014: Bleichenbacher again (BERserk): signature forgery
● 2015/2016: FREAK / Logjam: implementation flaws downgrade to EXPORT cryptography
● 2016: DROWN: use the server’s SSLv2 support to break SSLv3/TLS 1.{0,1,2}
● 2018: ROBOT: Bleichenbacher’s 1998 attack is still valid on many TLS 1.2 implementations
● 2023: Everlasting ROBOT: Bleichenbacher’s 1998 attack is still, still valid on many TLS 1.2 implementations

Public - Copyright PQShield Ltd - CC BY-SA X

Common Themes
● Attacks on old versions of TLS remain valid for decades

● XP, Vista, Android <5 never supported TLS 1.1, 1.2
● Many attacks are possible because legacy algorithms are never turned off by servers

● FREAK/Logjam: 512-bit RSA/Diffie-Hellman (‘Export’ crypto)
● Setting up TLS servers is a massive headache

● So many ciphersuites, key exchange groups, …

Public - Copyright PQShield Ltd - CC BY-SA X

Ciphersuites
in TLS

This isn’t even all of
them!

Public - Copyright PQShield Ltd - CC BY-SA X

Room for improvement
● TLS 1.2 is not very robust against attacks
● TLS 1.2 leaks server and user identities in the handshake
● TLS 1.2 is not super efficient in the handshake

Public - Copyright PQShield Ltd - CC BY-SA X

TLS 1.3 wishlist
❏ Secure handshake

❏ More privacy
❏ Only forward secret key exchanges
❏ Get rid of MD5, SHA1, 3DES, EXPORT, NULL, …

❏ Simplify parameters
❏ More robust cryptography
❏ Faster, 1-RTT protocol
❏ 0-RTT resumption

Public - Copyright PQShield Ltd - CC BY-SA X

TLS 1.3: RFC 8446
● Move key exchange into the first two

messages
● Encrypt everything afterwards
● Be done as soon as possible

Public - Copyright PQShield Ltd - CC BY-SA 10

TLS 1.3 full handshake
● Key exchange via ECDH

○ Only ephemeral key exchange
● Server authentication: Signature
● Handshake authentication: HMAC-SHA256

○ “Key confirmation”
● AEAD: Only AES-GCM or ChaCha20-Poly1305

Public - Copyright PQShield Ltd - CC BY-SA X

TLS 1.3 Resumption and 0-RTT
● If you have a pre-shared key, you can do a

bunch of stuff faster!
● Use PSK to compute traffic secret
● Ephemeral key exchange optional
● No certificates
● Use PSK to encrypt “Early Data”

Public - Copyright PQShield Ltd - CC BY-SA X

0-RTT caveats
 IMPORTANT NOTE: The security properties for 0-RTT data are weaker
 than those for other kinds of TLS data. Specifically:
 1. This data is not forward secret, as it is encrypted solely under
 keys derived using the offered PSK.
 2. There are no guarantees of non-replay between connections.
 Protection against replay for ordinary TLS 1.3 1-RTT data is
 provided via the server's Random value, but 0-RTT data does not
 depend on the ServerHello and therefore has weaker guarantees.
 This is especially relevant if the data is authenticated either
 with TLS client authentication or inside the application
 protocol. The same warnings apply to any use of the
 early_exporter_master_secret.
 0-RTT data cannot be duplicated within a connection (i.e., the server
 will not process the same data twice for the same connection), and an
 attacker will not be able to make 0-RTT data appear to be 1-RTT data
 (because it is protected with different keys). Appendix E.5 contains
 a description of potential attacks, and Section 8 describes
 mechanisms which the server can use to limit the impact of replay.

 RFC 8446 page 18

Public - Copyright PQShield Ltd - CC BY-SA X

Why 0-RTT?
● Siri requests
● GET requests on websites*
● Other stateless stuff

But are you sure your application is completely robust to replays?

GET /?query=INSERT into payments (to, amount)
 VALUES (“Thom”, 1000);

Public - Copyright PQShield Ltd - CC BY-SA 11

TLS 1.3 standardization
● Strong collaboration with academics for protocol evaluation

● Proofs on pen/paper, and using tools like ProVerif, Tamarin
● Academic results influenced protocol design
● But TLS working group gonna TLS working group

● State machines are still only in the appendix

Much less ad-hoc design: design-break-patch-release process instead of design-release-break-patch

Public - Copyright PQShield Ltd - CC BY-SA 12

TLS 1.3 wishlist
✓ Secure handshake

✓ More privacy
✓ Only forward secret key exchanges
✓ Get rid of MD5, SHA1, 3DES, EXPORT, NULL, …

✓ Simplify parameters
✓ More robust cryptography
✓ Faster, 1-RTT protocol
✓ 0-RTT resumption

❏Post-quantum?

Public - Copyright PQShield Ltd - CC BY-SA X

Server Name Indication: the remaining privacy problem

● TLS 1.3 encrypts the ServerCertificate and ClientCertificate messages

● But, Client includes the domain that they want to talk to in ClientHello in plain text!
● This allows CDNs / "virtual hosts" to serve many sites off of one IP address
● Problem: no keys established beforehand to encrypt the hostname
● Current proposed solution: put HPKE (RFC9180) keys in DNS so that server name can be encrypted

(ECH: Encrypted Client Hello, WIP)
● Post-Quantum challenges: DNS has significant size restrictions; adds additional ciphertext

● Only a real solution when many names map to the same IP (i.e. big-enough anonymity set implies
CDN)

● ECH KEM keys are not useful for server (host) authentication (due to anonymity set)

Public - Copyright PQShield Ltd - CC BY-SA 13

Post-Quantum TLS

Public - Copyright PQShield Ltd - CC BY-SA 14

Peter Shor

gx
ECC

RSA

Public - Copyright PQShield Ltd - CC BY-SA 15

Public - Copyright PQShield Ltd - CC BY-SA 16

TLS 1.3

Public - Copyright PQShield Ltd - CC BY-SA 17

TLS 1.3

(AES-128 is fine btw)

Public - Copyright PQShield Ltd - CC BY-SA 18

Post-Quantum KEMs

Public key Ciphertext

ML-KEM 512 800 b 768 b
ML-KEM 768 1184 b 1088b
ML-KEM 1024 1568 b 1568 b

Public - Copyright PQShield Ltd - CC BY-SA 19

Post-Quantum Signatures: NIST Standards

Public key Signature

ML-DSA 44 1312 b 2420 b
ML-DSA 65 1952 b 3309 b
ML-DSA 87 2592 b 4627 b

SLH-DSA Public Key Signature

128s 32 b 7856 b
128f 32 b 17088 b
192s 48 b 16224 b
192f 48 b 35664 b
256s 64 b 29792 b
256f 64 b 49856 b

Public key Signature

Falcon-512 897 b 666 b
Falcon-1024 1793 b 1280 b

⚠ Falcon signing uses 64-bit floats:
side-channel issues

Formerly known as SPHINCS+

Formerly Dilithium

Public - Copyright PQShield Ltd - CC BY-SA 20

We’re done!

Muhammad Mahdi Karim/www.micro2macro.net
GFDL 1.2 Source

https://en.wikipedia.org/wiki/File:African_Bush_Elephant.jpg

Public - Copyright PQShield Ltd - CC BY-SA 21

WebPKI

Public - Copyright PQShield Ltd - CC BY-SA 22

Public - Copyright PQShield Ltd - CC BY-SA 23

3 Certificates

Pre-installed

handshake signature
+ leaf certificate public key + intermediate certificate signature

+ root signature on intermediate
= 3 signatures and 2 public keys

Public - Copyright PQShield Ltd - CC BY-SA 24

Public Key Infrastructure
● Certificate Authorities (CA)
● Become a trusted CA by:

○ spending 💰 💰 on audits

○ convince vendors to install your certificate
● Vendors trust CAs to check if I own wggrs.nl
● Intermediate CA certs make key management easier

○ (offline master signing key, etc)

https://bugzilla.mozilla.org/show_bug.cgi?id=647959
http://wggrs.nl

Public - Copyright PQShield Ltd - CC BY-SA 25

Aside: PKI open problems
● Certificate issuance
● Certificate Revocation

○ Certificate Revocation Lists (CRL)
○ Online Certificate Status Protocol (OCSP)

● Any trusted CA can issue a certificate for anyone
○ Famously abused by Iran(?) to attack Gmail in DigiNotar.nl hack
○ “Certificate Transparency” (CT)

https://en.wikipedia.org/wiki/DigiNotar

Public - Copyright PQShield Ltd - CC BY-SA 26

Public - Copyright PQShield Ltd - CC BY-SA 27

Slap another signature on it

+= 1 signature += 3 signatures

Online Certificate Status Protocol

Certificate Transparency

Public - Copyright PQShield Ltd - CC BY-SA 28

Certificate Transparency
● Chrome, Safari require all certificates to be submitted to at least 2 certificate transparency logs
● Log is a Merkle tree of hostnames and hashes of included certificates

● No privacy! You can search this using https://crt.sh
● Auditing, etc, are part of the design
● SCT proofs in certificates are promises of inclusion within 24 hours for deployment reasons
● CT logs typically only accept certificates from trusted issuers
● Running Certificate Transparency Logs is extremely hard and expensive

● Only 6 log operators: Cloudflare, Digicert, Google, Sectigo, Let’s Encrypt, and TrustAsia

https://crt.sh/?q=ru.nl&exclude=expired&group=none

Public - Copyright PQShield Ltd - CC BY-SA 29

Summarising

● Typical web TLS handshake:
○ ephemeral key exchange
○ handshake signature
○ leaf certificate:

pk
+ signature by intermediate CA crt
+ OCSP staple
+ 3x SCT

○ intermediate CA certificate:
pk + signature by root CA

○ root certificate (preinstalled)

1 online keygen+key exchange

1 online signing operation

6 offline signatures

Public - Copyright PQShield Ltd - CC BY-SA 30

PQ Performance

Public - Copyright PQShield Ltd - CC BY-SA 31

Impact of PQ
● KyberML-KEM key exchange: ~1.5kB
● ML-DSA-44: 18 kB of certificates!!
● Falcon-512: ~5 kB

sizes per https://blog.cloudflare.com/sizing-up-post-quantum-signatures/

Note: TCP congestion control

On connection establishment, TCP will allow you to
send some amount of data before
acknowledgement from the other side.

This window (and thus available connection
bandwidth) scales as the connection is proven
reliable when receiving TCP ACKs.

The default initial window on Linux is 10 packets, so
if you send more than ~15 kB of data, you're
stuck waiting for an extra round-trip!

Even without congestion control,
more bytes = more slowlier

https://blog.cloudflare.com/sizing-up-post-quantum-signatures/

Public - Copyright PQShield Ltd - CC BY-SA 32

Cloudflare live internet experiment: More data results in slowdown

Bas Westerbaan, https://blog.cloudflare.com/sizing-up-post-quantum-signatures/. Cloudflare has a 30 MSS = ~40kb congestion window

https://blog.cloudflare.com/sizing-up-post-quantum-signatures/

Public - Copyright PQShield Ltd - CC BY-SA 33

Combining different algorithms
○ handshake signature
○ leaf certificate:

pk
+ signature by intermediate CA crt
+ OCSP staple
+ 3x SCT

○ intermediate CA certificate:
pk
+ signature by root CA

○ root certificate (preinstalled)

Robust against side-channels, pk+sig small

Signature-verification only, pk+sig small

Signature-verification only, signature small

Falcon

ML-DSA

UOV? (Signatures on-ramp)

Note: using multiple algorithms also has cost!

Src: Post-Quantum TLS, Thom Wiggers. PhD thesis. https://wggrs.nl/p/thesis/ Excludes OCSP and SCTs!

https://wggrs.nl/p/thesis/

Public - Copyright PQShield Ltd - CC BY-SA 35

By the way: Chrome 124.0

Public - Copyright PQShield Ltd - CC BY-SA 36

Severe performance impact
● Kyber-768 “only” adds 2.3 kB to the handshake
● Google notes this already slows down handshakes by 4%
● Google observes a significant impact on lower-quality internet connections

● This is why they’re only enabling this on Chrome Desktop right now

● We need something better than just replacing signatures

https://blog.chromium.org/2024/05/advancing-our-amazing-bet-on-asymmetric.html
https://dadrian.io/blog/posts/pqc-signatures-2024/

https://blog.chromium.org/2024/05/advancing-our-amazing-bet-on-asymmetric.html
https://dadrian.io/blog/posts/pqc-signatures-2024/

Public - Copyright PQShield Ltd - CC BY-SA 37

Not just speed
● Larger Hello messages can lead

to fragmentation
● Not all implementations are

prepared to deal with fragmented
packets

● Especially middle boxes affected

https://tldr.fail

https://tldr.fail

Public - Copyright PQShield Ltd - CC BY-SA 38

More problems with sizes
● Variant protocols DTLS and QUIC are based on

UDP: no TCP SYN/ACK sequence
● ClientHello message received by server could

be spoofed, so QUIC allows sending back at
most 3x the ClientHello size (avoids DoS
amplification)

● Sending back 18kB of ML-DSA requires the
client to pad its ClientHello message with
~5kB

Public - Copyright PQShield Ltd - CC BY-SA 39

Avoiding the costs of certificates
● Certificates are already very large, PQ makes this much worse
● We have multiple signatures that prove validity in each certificate:

● Signature on certificate itself
● OCSP staple that proves that certificate is currently valid
● Certificate Transparency log inclusion proves that certificate was from a trusted issuer

Can we do things in a smarter way?

Public - Copyright PQShield Ltd - CC BY-SA 40

New WebPKI?

Public - Copyright PQShield Ltd - CC BY-SA 41

Avoiding the costs of certificates
● Certificates are very large, PQ makes this much worse
● We have multiple signatures that prove validity in each certificate:

● Signature on certificate itself
● OCSP staple that proves that certificate is currently valid
● Certificate Transparency log inclusion proves that certificate was from a trusted issuer

Can we do things in a smarter way?

Now is the time for redesigning the PKI

Public - Copyright PQShield Ltd - CC BY-SA 42

Abridged Compression for WebPKI Certificates
● Browser vendors control the root certificates that are included
● Step 1: Just ship the intermediate certificates as well

● Client indicates to the server it has version N of the intermediate certificates list
● Server omits intermediate certificate if present in list version N
● Immediate savings: 1 certificate including 1 public key + 1 signature

https://datatracker.ietf.org/doc/draft-ietf-tls-cert-abridge/

https://datatracker.ietf.org/doc/draft-ietf-tls-cert-abridge/

Public - Copyright PQShield Ltd - CC BY-SA 43

Abridged Compression for WebPKI Certificates
● Certificates contain many common strings

● policy urls, CA names, CT urls, extensions …
● RFC 8879 already specifies certificate

compression using zlib, brotli, zstd
● Step 2: Instead of applying compression algorithm

directly, pre-train a compression dictionary based on
sample certificates from all issuers

● Ship compression dictionary in browser

https://datatracker.ietf.org/doc/draft-ietf-tls-cert-abridge/

https://gigazine.net/gsc_news/en/20240307-shared-
dictionary-compression-chrome/

https://datatracker.ietf.org/doc/draft-ietf-tls-cert-abridge/

Public - Copyright PQShield Ltd - CC BY-SA 44

Abridged Certificate Compression for TLS
● Step 3: compress certificates before sending using

the pre-trained dictionary (if client up-to-date)

● Shipping compression dictionary out-of-band
massively improves compression results

● Gain ~3000 bytes, i.e. space for 1 ML-DSA
● Remember that public keys and signatures

themselves don't compress at all
● Security analysis very easy: just uncompress and

you have the same TLS handshake

https://datatracker.ietf.org/doc/draft-ietf-tls-cert-abridge/

https://datatracker.ietf.org/doc/draft-ietf-tls-cert-abridge/

Public - Copyright PQShield Ltd - CC BY-SA 45

Merkle Tree Certificates
What if we build the PKI on Certificate Transparency’s ideas, combined with OCSP?
● Step 1: CA builds a Merkle Tree of all its currently valid certificates
● Step 2: Browsers collect and validate Merkle Tree heads and push them to clients
● Step 3: Webserver replaces its certificate chain by public key + merkle tree authentication path
● Step 4: Repeat every hour

This achieves authentication of the server public key in ~1000 bytes!

But is only a solution if you can keep your clients constantly up-to-date…

https://datatracker.ietf.org/doc/draft-davidben-tls-merkle-tree-certs/

https://datatracker.ietf.org/doc/draft-davidben-tls-merkle-tree-certs/

Public - Copyright PQShield Ltd - CC BY-SA 46

Merkle Tree Certificates
● Big changes necessary to every part of the ecosystem

● Short-lived certificates
● Webserver must continuously fetch the latest authentication paths
● Clients must keep downloading currently valid tree heads
● Automated certificate provisioning such as ACME [RFC8555] should help with this

● New trust model makes security analysis more complicated

● Both MTC and Abridged Compression designed for big deployments and publicly trusted CAs
● What about IoT? What about ABN AMRO’s internal stuff?

Public - Copyright PQShield Ltd - CC BY-SA 47

KEMTLS

Public - Copyright PQShield Ltd - CC BY-SA 48

PQ signatures are 
big and/or 

slow and/or 
need hw support

💡
Use key exchange for authentication

Public - Copyright PQShield Ltd - CC BY-SA 50

Authentication

Explicit authentication:
Alice receives assurance that she really is
talking to Bob
● Signed Diffie-Hellman
● SIGMA
● TLS 1.3

Implicit authentication:
Alice is assured that only Bob would be able to
compute the shared secret
● Signal
● Wireguard
● Noise framework

Can always use MAC to confirm key

Public - Copyright PQShield Ltd - CC BY-SA 51

TLS handshake authentication

● Signatures allow us to authenticate immediately!

 Client Server
 ClientHello -------->
 <-------- ServerHello
 <...>
 <CertificateRequest>
 <Certificate>

 <CertificateVerify>
 <-------- <Finished>

 <Certificate>
 <CertificateVerify>  
 <Finished> -------->

 [Application Data] <-------> [Application Data]

 <msg>: enc. w/ keys derived from ephemeral KEX (HS)
 [msg]: enc. w/ keys derived from HS (MS)

Public - Copyright PQShield Ltd - CC BY-SA 52

Authenticated Key Exchange via KEM

Note that this protocol assumes that we have already exchanged the public keys!

Public - Copyright PQShield Ltd - CC BY-SA 53

TLS authentication via KEM
● Signatures allow us to authenticate

immediately!
● KEMs require interactivity

● Exercise for the reader: see how Diffie—
Hellman's non-interactive key exchange
property would have allowed us to do this
more efficiently
(See OPTLS by Krawczyk and Wee)

 Client Server
 ClientHello -------->
 <-------- ServerHello
 <...>
 <CertificateRequest>
 <-------- <Certificate>
 <KemEncapsulation> -------->

 <-------- <Finished>
 <Certificate> -------->
 <-------- <KemEncapsulation>  
 <Finished> --------> |

 [Application Data] <-------> [Application Data]

 <msg>: enc. w/ keys derived from ephemeral KEX (HS)
 [msg]: enc. w/ keys derived from HS (MS)

Public - Copyright PQShield Ltd - CC BY-SA 54

KEMTLS

KEM for
ephemeral key exchange

KEM for
server-to-client
authenticated key exchange

Combine shared secrets

Public - Copyright PQShield Ltd - CC BY-SA 55

KEMTLS
● What can a server send to a client, before

the client has said what they wanted?
● Use implicitly authenticated key to encrypt

application message (request) to server
before receiving Server’s Finished message

● Avoid 2-RTT protocol
● Client can send HTTP request in same place

as in TLS 1.3

1 RTT

Sizes of KEMTLS

Table excludes OCSP, SCT

Slightly dated slide borrowed from Douglas Stebila

Public - Copyright PQShield Ltd - CC BY-SA 58

KEMTLS client auth
● Unfortunately, no nice tricks exist for the

client certificate …

● Full extra round-trip in KEMTLS

● Also: we need an extra “authenticated”
handshake traffic secret to protect the
client certificate

 Client Server  

 ClientHello -------->
 <-------- ServerHello
 <...>
 <CertificateRequest>
 <-------- <Certificate> ^
 <KEMEncapsulation> | Auth
 ^ {Certificate} --------> |
 | |
 | <-------- {KEMEncapsulation} |
 | {Finished} --------> |
 | [Application Data] --------> |
 v <------- {Finished} v

 [Application Data] <-------> [Application Data]

 <msg>: enc. w/ keys derived from ephemeral KEX (HS)
 {msg}: enc. w/ keys derived from HS+srv. KEM Auth (AHS)
 [msg]: enc. w/ keys derived from AHS+cl. KEM Auth (MS)

RTT

RTT

Public - Copyright PQShield Ltd - CC BY-SA 59

KEMTLS-PDK
● The client often knows the server:

○ It’s the 10th time you refreshed the front page of Reddit in the past 5 minutes

○ You’ve been doom-scrolling /r/wallstreetbets 📉 for two hours already

○ Or the client is a too-cheap IoT security camera spying on you for China checking firmware
updates from the same server every day

➡ The client reasonably might know the server’s long-term key

Public - Copyright PQShield Ltd - CC BY-SA 60

KEMTLS-PDK
● Use server’s long-term (certificate) public key to

encaps before ClientHello
● Send the ciphertext with ClientHello
● Don’t transmit certificates anymore
● Save even more bytes

 Client Server

 ct <- KEM.Encaps(pkS)
 ClientHello
 + …
 + KemEncapsulation -------->
 <-------- ServerHello
 <...>
 <-------- <Finished>
 <-------- [Application Data]
 <Finished> -------->
 [Application Data] <-------> [Application Data]

 <msg>: enc. w/ keys derived from KEX+srv. KEM auth (HS)
 [msg]: enc. w/ traffic keys derived from HS (MS)

Public - Copyright PQShield Ltd - CC BY-SA 61

KEMTLS-PDK
● We now have an implicitly authenticated key

already before we sent the ClientHello message!
● Use this to also encrypt and send over the

client’s certificate
● Or 0-RTT?

● ❗ No replay protection

● ❗ No forward secrecy

 Client Server

 ClientHello
 + KemEncapsulation
 {Certificate} -------->
 <-------- ServerHello
 <...>
 <KEMEncapsulation>
 <-------- <Finished>
 <-------- [Application Data]
 <Finished> -------->
 [Application Data] <-------> [Application Data]

 {msg}: enc. w/ keys derived from srv. KEM auth (ES)
 <msg>: enc. w/ keys derived from KEX+srv. KEM auth (HS)
 [msg]: enc. w/ keys derived from HS+cl. KEM auth (MS)

Public - Copyright PQShield Ltd - CC BY-SA 62

TLS ecosystem challenges
● Datagram TLS

● Use of TLS handshake in other protocols

○ e.g. QUIC

● Application-specific behaviour

○ e.g. HTTP3 SETTINGS frame not server-authenticated

● PKI involving KEM public keys

● Long tail of implementations

● …

Public - Copyright PQShield Ltd - CC BY-SA 63

Standardizing KEMTLS
● Authentication bits from KEMTLS have been submitted to the TLS working group at the Internet

Engineering Task Force (IETF) (aka the RFC people)
○ https://datatracker.ietf.org/doc/draft-celi-wiggers-tls-authkem/
○ https://datatracker.ietf.org/doc/draft-wiggers-tls-authkem-psk/
○ https://wggrs.nl/docs/authkem-abridged/

https://datatracker.ietf.org/doc/draft-celi-wiggers-tls-authkem/
https://wggrs.nl/docs/authkem-abridged/

Public - Copyright PQShield Ltd - CC BY-SA 64

Transitioning to PQ
● The transition to post-quantum means:

○ KEMs are less flexible than Diffie—Hellman
■ No non-interactive key exchange

○ PQ is bigger than ECC we got used to
○ Post-Quantum Signatures are big

● Big changes to surrounding ecosystems might be necessary
● KEMTLS really explores new tradeoffs

○ Signing and key exchange are not the same operations anymore
○ Transitioning to PQ is an opportunity to reconsider some established protocols!

Public - Copyright PQShield Ltd - CC BY-SA 65

Internship / thesis opportunities
● PQShield has experts in cryptographic software, hardware design, side-channel analysis,

cryptanalysis, cryptographic primitive design, secure messaging, and so on
● We publish many research papers in top-tier conferences each year
● We can host research/thesis projects, and might also be able to help with your project ideas

Example:
● Apples-to-apples comparison of hardware implementations of classical and post-quantum

cryptography

Reach out to thom.wiggers@PQShield.com

mailto:thom.wiggers@PQShield.com

