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Post-quantum cryptography

Cryptography based on problems that are hard both for
classical and quantum computers.

Categories of mathematical problems
I Lattice-based
I Code-based
I Hash-based
I Multivariate
I Isogenies

Learning Parity with Noise falls in the code-based category.
We want to qualify how hard the LPN problem is.
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Learning Parity without Noise

s ·




0 0 0 1 0 0
0 1 0 1 1 0
0 1 0 1 0 0
1 1 1 0 1 1
0 0 1 0 1 0
1 1 1 1 1 0




=
(
1 1 1 0 0 0

)



Learning Parity without Noise

Through the magic of Gaussian elimination

s =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



·
(
1 1 1 0 0 1

)
=
(
1 1 1 0 0 1

)



Learning Parity with Noise [Reg05]

We add some noise to the computations. We flip a bit using a biased
coin (Bernoulli distribution) that gives head (1) with probability τ .

s ·


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0 0 0 1 0 0
0 1 0 1 1 0
0 1 0 1 0 0
1 1 1 0 1 1
0 0 1 0 1 0
1 1 1 1 1 0


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+ e =
(
1 0 1 0 0 0

)

Suddenly, finding s is hard.
Hardness related to decoding random codes.
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The LPN problem

Definition (LPN Oracle samples)
We have some LPN problem with secret s of length k bits. Our
biased ‘coin’ Berτ gives e = 1 with probability τ .

We obtain samples (a, c) such that

〈a, s〉 + e = c

where a is a k-bit uniformly random vector and e ← Berτ .
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where a is a k-bit uniformly random vector and e ← Berτ .




a1
a2
a3
a4
a5
a6



· s +




e1
e2
e3
e4
e5
e6


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


c1
c2
c3
c4
c5
c6


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The LPN problem

Definition (LPN Oracle samples)
We have some LPN problem with secret s of length k bits. Our
biased ‘coin’ Berτ gives e = 1 with probability τ .
We obtain samples (a, c) such that

〈a, s〉 + e = c

where a is a k-bit uniformly random vector and e ← Berτ .

Definition (Search LPN Problem)
Given n samples (a, c), recover (information on) s.
We want to do this using at most t amount of time, n samples and
m memory.

Familiar? LWE is the same problem over Zq.



The classic BKW algorithm [BKW00]

1. Repeat until small enough

1.1 Sort queries into sets Vj that have the same b bits at the end.
1.2 Pick one (a′, c ′) from Vj and add it to all the other samples in

Vj .
k

1 0 0 1 1 10 1 0 1 0 1
⊕ b

0 0 1 1 0 01 0 0 1 0 1

=

1 0 1 0 1 11 1 0 0 0 0
k′

2. Throw out all samples that have more than one bit set in a.
3. For 0 < j < b, sort into sets Wj that have aj = 1.
4. Decide sj by the majority of the c in Wj
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The LF1 algorithm [LF06]

1. Repeat until small enough
1.1 Sort queries into sets Vj that have the same b bits at the end.
1.2 Pick one (a′, c ′) from Vj and add it to all the other samples in

Vj .

k

1 0 0 1 1 10 1 0 1 0 1
⊕ b
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=

1 0 1 0 1 11 1 0 0 0 0
k′

2. Apply mathematical magic (Walsh-Hadamard transform) to
recover s1, . . . , sb.
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Generic solving algorithm

Solve an LPNk,τ problem, given n samples.
1. Apply reduction algorithm and obtain LPNk ′,τ ′ problem with n′

samples.

2. Apply solving algorithm consuming n′ samples.
→ obtain information on s.

We may apply several reductions algorithms in sequence!
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Complexity

Time Samples Memory20

211

222

233

244

255

266

277

288

LPN with k = 256 and = 1
5

BKW
LF1



The Gauss algorithm [EKM17]

Main idea: Try to find an error-free set of samples and then simply
apply Gaussian elimination.

1. Take k samples (a, c) as invertible matrix A and vector c.
2. Compute s′ = A−1 · c.
3. If Test(s′) confirms it’s error-free, we’re done, else goto 1.

The Test(s′) algorithm is as follows:

1. Take m samples (a, c) and write them as matrix Atest, ctest.
2. Compute e′ = Atest · s′ + ctest.

I We know Atest · s + e = ctest
I We also know e will have roughly m · τ bits flipped

3. If e′ has approximately m · τ bits flipped, probably s′ = s
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Variant: Pooled Gauss

1. Take n = k2 log2 k samples as a sample pool.

2. Randomly take k samples (a, c) from the pool as invertible
matrix A and vector c.

3. Compute s′ = A−1 · c.
4. If Test(s′) confirms it’s error-free, we’re done, else goto 1.
 Needs much less samples.
This algorithm is an Information-Set Decoding algorithm: it finds an
error-free index set in the pool. Notably, it resembles the [Pra62]
algorithm.
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Complexities

To solve LPNk,τ :

n Samples Time Memory

BKW 20 · ln(4k) · 2b · (1− 2τ)−2a kan kn

LF1 (8b + 2000) (1− 2τ)−2a +(a−1)2b kan + b2b kn + b2b

Gauss k · I +m
(
k3 + km

)
I k2 + km

Pooled
Gauss

k2 log2 k +m
(
k3 + km

)
I k2 log2 k + km

Gauss needs I = O
(

log2
2 k

(1−τ)k

)
iterations to find a solution.
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This allows us to reduce a k-size LPN problem with noise τ to a
k ′-sized LPN problem with noise τ ′.
This new noise τ ′ is strongly dependent on the code used. We
measure the impact as bc. (0 ≤ bc ≤ 1, larger is better)
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Finding codes for the reduction

I We need a code that allows us to reduce from k to k ′.

I We could use random codes, but they are hard to decode.
I (Quasi-)Perfect codes give the best bc, but only few are known.
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Coded Gauss

1. Apply covering-codes reduction to reduce problem size from k
to k ′.

2. Recover secret using Gauss

The complexity of this algorithm:

I We will need I = O
(

log2
2 k

(1−τ ′)k′

)
attempts before we find k ′

error-free samples.
I Gauss needs n = k ′ · I +m samples.
I In each Gauss iteration we do k3 + k ·m work
I We will need to decode all the n samples as well
→ Time complexity O(n + (k3 + k ·m) · I )
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How ‘good’ should a code be?

Let’s assume we have arbitrary [k, k ′] codes.
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(b) More detailed look at 0 < k ′ ≤ 128.

Figure: Minimal bc before Coded Gauss is faster than applying Gauss to
the full problem. k = 512, τ = 1

8 .
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The best-case scenario for bc

Assume we have arbitrary, (quasi-)perfect codes.

Figure: Minimal bc and the bc obtained at the Hamming bound for various
τ . k = 512, δ = δs = 1− 2τ .
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Assume we have arbitrary, (quasi-)perfect codes.

bc ≤ 2k
′−k

R∑

w=0

(
k

w

)(
δws − δR+1

s

)
+ δR+1

s .

Here, R is a property we can bound for quasi-perfect codes
(Hamming Bound [Ham50]) and δs = 1− 2τ .

Figure: Minimal bc and the bc obtained at the Hamming bound for various
τ . k = 512, δ = δs = 1− 2τ .
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The best-case scenario for bc

Assume we have arbitrary, (quasi-)perfect codes.
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Coded Gauss doesn’t work

In conclusion, the following:
1. Apply covering code to reduce to k ′-sized problem
2. Use Gauss to solve the problem

isn’t faster than only applying step 2.

Note
Our analysis was limited to the above algorithm. We have results
that show the following may work
1. Apply some reduction to reduce to a k ′-sized problem with

noise τ ′

2. Apply covering code to reduce to k ′′-sized problem with noise
τ ′′

3. Use Gauss to solve the problem

However, we would also need to include the complexity of step 1
when analysing this combination.
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Improving the performance of the covering-codes reduction

The covering-codes reduction as originally proposed:
1. Apply covering-codes reduction
2. Recover information on s using Walsh-Hadamard Transform.

Picking codes is hard. Much of the work around this attack has been
on finding the right codes to instantiate attacks.



Improving the performance of the covering-codes reduction

The covering-codes reduction as originally proposed:
1. Apply covering-codes reduction
2. Recover information on s using Walsh-Hadamard Transform.

Picking codes is hard. Much of the work around this attack has been
on finding the right codes to instantiate attacks.



Concatenated Codes

Current attacks use concatenations of small perfect codes to
construct larger [k, k ′] codes.

Example
We construct the following [12, 4] code from [3, 1] repetion codes
with generator

(
1 1 1

)
:



1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1




The bc of concatenated codes is the product of the bc of the smaller
codes.
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Concatenated Codes (cont.)

Example
We construct the following [12, 4] code from [3, 1] repetion codes
with generator

(
1 1 1

)
:



1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1




Decoding Algorithm

1. Generate look up tables for the small codes
2. Split your vector along the small codes
3. Look up the codewords for the individual pieces in the lookup

tables
4. Concatenate



StGen codes

Samardjiska and Gliogoski proposed an improvement on these
concatenations of codes. We add random noise on top of the blocks.

G = Ik

B1k1 B′
2

B2k2

n2

. . .. . . B′
v

Bvkv
0







n1

nv

(1)

Simona proposed using these codes with the covering-codes
reduction at a department lunch talk.



Decoding StGen Codes

G = Ik

B1k1 B′
2

B2k2

n2

. . .. . . B′
v
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


n1

nv

(2)

Decoding algorithm sketch

1. Set maximum error weights and limits

2. Split vector into pieces
3. Produce all candidate codewords and error vectors for first

block B1

4. Multiply each of these by B ′2 to account for that random noise
5. Generate all the candidates for B2

6. Increase maximum weights if you have few candidates for the
next round.
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Complications of StGen codes

I Decoding is not trivial

I Decoding algorithm based on list decoding [SG17]
I Highly tweakable

I Because of the random elements we can no longer directly
compute bc.

I For random codes computing bc is a hugely expensive operation.
I We instead estimate it over a number of random vectors
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Finding reduction chains

Bogos and Vaudenay propose a search algorithm for finding
combinations of reductions:

Figure: Finding chains of reductions [Bog17].



Improving the performance of an attack
Bogos and Vaudenay propose a combination of reductions to solve
LPN512, 18

in O(278.85) time using 263.3 samples.

Step k log2 n 1 − 2τ δs Algorithm

1 512 63.3 0.75 0 sparse-secret
2 512 63.3 0.75 0.75 xor-reduce (b = 59)
3 453 66.6 0.5625 0.75 xor-reduce (b = 65)
4 388 67.2 0.3164 0.75 xor-reduce (b = 66)
5 322 67.4 0.1001 0.75 xor-reduce (b = 66)
6 256 67.8 0.0100 0.75 xor-reduce (b = 67)
7 189 67.6 0.0001 0.75 covering-codes
8 64 67.6 8.8 · 10−10 FWHT

Table: The full solving chain of Bogos and Vaudenay [BV16; BV] on
LPN512, 1

8
. In step 7 they apply a [189, 64] covering code with

bc = 8.78 · 10−6.
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The code used by Bogos and Vaudenay

The last reduction applied uses a number of random codes.

Table: bc for the small random codes used in the solving algorithm for
LPN512, 1

8
[BV16; BV].

Code Count bc
(
τ = 1

8

)

[18, 6] 1 0.323782920837402
[19, 6] 5 0.291754990816116
[19, 7] 4 0.336303114891052
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The code used by Bogos and Vaudenay

G =
Ik

[19, 7]

[18, 6]

. . .
[19, 6]

0







The bc of the concatenated code is

bc = 0.3231 · 0.2925 · 0.3364 = 8.78 · 10−6.



The code used by Bogos and Vaudenay

G =
Ik

[19, 7] B′
2

[18, 6]. . .. . .
B′

v

[19, 6]
0







The bc of this StGen code is approximated to

bc ≈ 3.8 · 10−5.



Theoretical improvement

Using bc = 3.8 · 10−5 we improve the performance of the algorithm.

Table: Improved attack on LPN512, 1
8

Original With StGen code

Time O
(
278.85) O

(
278.1)

Samples 263.3 263.2

But: we assumed that decoding takes O(1) time!

Table: Decoding times

Base codes Concatenated StGen

B&V 0.2 ms
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Theoretical improvement

Using bc = 3.8 · 10−5 we improve the performance of the algorithm.

Table: Improved attack on LPN512, 1
8

Original With StGen code

Time O
(
278.85) O

(
278.1)

Samples 263.3 263.2

But: we assumed that decoding takes O(1) time!

Table: Decoding times

Base codes Concatenated StGen

B&V 0.2 ms ±500 000 ms
Small perfect 0.009 ms 20–100 ms
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Finding reduction chains

Bogos and Vaudenay propose a search algorithm for finding
combinations of reductions:

Figure: Finding chains of reductions [Bog17].



Finding new reduction chains

Bogos and Vaudenay propose a search algorithm for finding
combinations of reductions:

Figure: Finding chains of reductions with Gauss [Bog17].
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Software

We developed software that allows to implement LPN solving
algorithms.

// Create LPN oracle with k=32 and tau=1/32
let mut oracle = LpnOracle::new(32, 1.0 / 32.0);
oracle.get_samples(1000);
// apply the LF2 `xor_reduce' reduction
// using b = 8 three times
xor_reduction(&mut oracle, 8);
xor_reduction(&mut oracle, 8);
xor_reduction(&mut oracle, 8);
// solve using two techniques
let fwht_solution = fwht_solve(oracle.clone());
let gauss_solution = pooled_gauss_solve(oracle);

Available via https://thomwiggers.nl/research/msc-thesis/.

https://thomwiggers.nl/research/msc-thesis/
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The BKW algorithm

Input: A set V of n samples (a, c) from OLPN
s,t , a, b s.t. k ≥ ab

1 for i = 1 to a− 1 do
// Reduction (partition-reduce):

2 Partition V = V1 ∪ · · · ∪ V2b s.t. they all have the same bit
values on the last ib bits

3 foreach Vj do
4 Choose a (a′, c ′) ∈ Vj

5 Replace all other (a, c) ∈ Vj by (a + a′, c + c ′)
6 Discard (a′, c ′)
// Solving phase (majority):

7 Discard all samples (a, c) from V where HW (a) 6= 1
8 Divide V into b partitions, such that vectors a ∈ Vj have aj = 1
9 for i = 1 to b do

10 si = majority(c), for all (a, c) ∈ Vi

11 return s1, . . . , sb



LF1 algorithm

Algorithm 1: The LF1 algorithm as presented in [BTV15]

Input: A set V of n samples (a, c) from OLPN
s,t ,

a, b s.t. k = ab
Output: (s1, . . . , sa) from s

1 Run a− 1 iterations of partition-reduce as in the BKW
algorithm

// Solving Phase (FWHT):
2 f (x) =

∑
(a,c)∈V 1V1,...,b=x(−1)c

3 f̂ (x) =
∑

x (−1)〈a,x〉f (x)
4 return (s1, . . . , sb) = arg max

a∈Zb
2

(f̂ (a))



LF2 algorithm

Algorithm 2: The LF2 algorithm [LF06]

Input: A set V of n samples (a, c) from OLPN
s,t ,

a, b s.t. k = ab
Output: (s1, . . . , sb) from s

1 for i = 1 to a− 1 do
2 Partition V = V1 ∪ · · · ∪ V2b s.t. they all have the same bit

values on the last ib bits
3 foreach Vj do
4 V ′j = ∅
5 for (a, c), (a′, c ′) ∈ Vj , (a, c) 6= (a′, c ′) do
6 V ′j = V ′j ∪ {(a + a′, c + c ′)}
7 V = V ′1 ∪ · · · ∪ V ′2b
// Solving Phase (FWHT) [..]

8 return (s1, . . . , sb) = argmax(f̂ (a))



Gauss

1 Function Gauss(OLPN
s,τ , τ)

2 repeat
3 repeat
4 (A, c)←

(
OLPN

s,τ
)k

5 until A is full rank
6 s′ = A−1c
7 until Test(s′, τ , 1

2k ,
(1−τ

2

)k)
8 return s′

1 Function Test(s′, τ , α, β)

2 m =

(√
3
2 ln( 1

α)+
√

ln 1
β

1
2−τ

)2

;

3 c = τm +√
3
(1

2 − τ
)
ln
( 1
α

)
m;

4 (A, c)←
(
OLPN

s,τ
)m;

5 if HW (As′ + c) ≤ c then
6 return True;
7 else
8 return False;



Pooled Gauss

1 Function PooledGauss(OLPN
s,τ , τ)

2 P ←
(
OLPN

s,τ
)k2 log2 k

3 repeat
4 repeat
5 (A, c) U←− P
6 until A is full rank
7 s′ = A−1c
8 until Test(s′, τ , 1

2k ,
(1−τ

2

)k)
9 return s′



When is Coded Gauss faster

(
k3 + km

)
log2

2 k(1
2 + 1

2δ
)k ≥

(
k ′3 + k ′m

)
log2

2 k
′

(1
2 + 1

2δbc
)k ′ +m + n.
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StGen decoding

Input: w1, wb, winc, G , Lmax, c ∈ Fn
2.

Output: A close codeword of c
Let Ki = Σi

j=1kj , Ni = Σi
j=1nj and let Gi be the ‘small code’ (Iki |Bi ).

1 L0 = {(x0, e0)}, x0, e0 are zero-dimensional vectors.
2 for i = 1 to v do
3 foreach (xi−1, ei−1) in Li−1 do
4 b =

(
cKi−1 , . . . , cKi

)
||
(
xi−1B

′
i +

(
ck+Ni−1 , . . . , ck+Ni

))
5 max-wt = min(wi − HW (ei−1),wb)

6 foreach e′ ∈
{
v ∈ Fni+ki

2 | HW (v) ≤ max-wt
}

do
7 Find x′ s.t. x′Gi + b = e′

8 enew =

(
(ei−1)1, . . . , (ei−1)Ki−1

, e′1, . . . , e′ki ,

(ei−1)Ki−1
, . . . , (ei−1)Ki−1+Ni−1

, e′ki , . . . , e
′
ki+ni

)
9 Add (xi−1||x′, enew) to Li

10 if |Li | < Lmax then wi+1 = wi + winc else wi+1 = wi

11 return x from (x, e) ∈ Lv where HW (e) is minimal
Algorithm 3: List-decoding StGen codes [SG15]
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