Solving LPN Using Large Covering Codes

Thom Wiggers

Radboud University, Nijmegen, The Netherlands

8th August 2019

Outline

Intro

Learning Parity with Noise

Breaking LPN The covering-codes reduction

Covering Codes

Combinations of reductions

What we are working on

Cryptography based on problems that are hard both for classical and quantum computers.

Cryptography based on problems that are hard both for classical and quantum computers.

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

Categories of mathematical problems

- Lattice-based
- Code-based
- Hash-based
- Multivariate
- Isogenies

Cryptography based on problems that are hard both for classical and quantum computers.

Categories of mathematical problems

- Lattice-based
- Code-based
- Hash-based
- Multivariate
- Isogenies

Learning Parity with Noise falls in the code-based category.

Cryptography based on problems that are hard both for classical and quantum computers.

Categories of mathematical problems

- Lattice-based
- Code-based
- Hash-based
- Multivariate
- Isogenies

Learning Parity with Noise falls in the code-based category. We want to qualify how hard the LPN problem is.

All maths in this talk will be in base two:

▶ 0 + 0 = 0

All maths in this talk will be in base two:

▶ 0 + 0 = 0

All maths in this talk will be in base two:

All maths in this talk will be in base two:

All maths in this talk will be in base two:

All maths in this talk will be in base two:

All maths in this talk will be in base two:

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

0+0=0
1+0=0+1=1
1+1=0

So a + b + b = a.

All maths in this talk will be in base two:

0+0=0
1+0=0+1=1
1+1=0
So a+b+b = a.

Also, 1-1 = 0 = 1+1

Outline

Intro

Learning Parity with Noise

Breaking LPN The covering-codes reduction

Covering Codes

Combinations of reductions

What we are working on

Learning Parity without Noise

$$\mathbf{s} \cdot \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \end{pmatrix} = (1 \ 1 \ 1 \ 0 \ 0 \ 0)$$

<□> <@> < E> < E> EI= のQ@

Learning Parity without Noise

Through the magic of Gaussian elimination

$$\mathbf{s} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

<□> <@> < E> < E> EI= のQ@

Learning Parity with Noise [Reg05]

We add some noise to the computations. We flip a bit using a biased coin (Bernoulli distribution) that gives head (1) with probability τ .

Learning Parity with Noise [Reg05]

We add some noise to the computations. We flip a bit using a biased coin (Bernoulli distribution) that gives head (1) with probability τ .

$$\mathbf{s} \cdot \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \end{pmatrix} + \mathbf{e} = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Suddenly, finding s is hard. Hardness related to *decoding random codes*.

Definition (LPN Oracle samples)

We have some LPN problem with secret s of length k bits. Our biased 'coin' Ber_{τ} gives e = 1 with probability τ .

Definition (LPN Oracle samples)

We have some LPN problem with secret s of length k bits. Our biased 'coin' Ber_{τ} gives e = 1 with probability τ . We obtain samples (a, c) such that

Definition (LPN Oracle samples)

We have some LPN problem with secret s of length k bits. Our biased 'coin' Ber_{τ} gives e = 1 with probability τ . We obtain samples (a, c) such that

$$\langle \mathbf{a}, \mathbf{s} \rangle + e = c$$

where **a** is a *k*-bit uniformly random vector and $e \leftarrow Ber_{\tau}$.

Definition (LPN Oracle samples)

We have some LPN problem with secret s of length k bits. Our biased 'coin' Ber_{τ} gives e = 1 with probability τ . We obtain samples (a, c) such that

$$\langle \mathbf{a}, \mathbf{s} \rangle + e = c$$

where **a** is a *k*-bit uniformly random vector and $e \leftarrow \text{Ber}_{\tau}$.

$$\begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \\ \mathbf{a}_4 \\ \mathbf{a}_5 \\ \mathbf{a}_6 \end{pmatrix} \cdot \mathbf{s} + \begin{pmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \\ e_5 \\ e_6 \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \\ c_6 \end{pmatrix}$$

Definition (LPN Oracle samples)

We have some LPN problem with secret s of length k bits. Our biased 'coin' Ber_{τ} gives e = 1 with probability τ . We obtain samples (a, c) such that

$$\langle \mathbf{a}, \mathbf{s} \rangle + e = c$$

where **a** is a *k*-bit uniformly random vector and $e \leftarrow \text{Ber}_{\tau}$.

$$A \cdot \mathbf{s} + \mathbf{e} = \mathbf{c}$$

Definition (LPN Oracle samples)

We have some LPN problem with secret s of length k bits. Our biased 'coin' Ber_{τ} gives e = 1 with probability τ . We obtain samples (a, c) such that

$$\langle \mathbf{a}, \mathbf{s} \rangle + e = c$$

where **a** is a *k*-bit uniformly random vector and $e \leftarrow \text{Ber}_{\tau}$.

Definition (Search LPN Problem)

Given *n* samples (a, c), recover (information on) s. We want to do this using at most *t* amount of time, *n* samples and *m* memory.

Definition (LPN Oracle samples)

We have some LPN problem with secret s of length k bits. Our biased 'coin' Ber_{τ} gives e = 1 with probability τ . We obtain samples (a, c) such that

$$\langle \mathbf{a}, \mathbf{s} \rangle + e = c$$

where **a** is a *k*-bit uniformly random vector and $e \leftarrow \text{Ber}_{\tau}$.

Definition (Search LPN Problem)

Given *n* samples (a, c), recover (information on) s. We want to do this using at most *t* amount of time, *n* samples and *m* memory.

Familiar? LWE is the same problem over \mathbb{Z}^q .

・ロト < 目 > < 目 > < 目 > < 目 > < 0 < 0

1. Repeat until small enough

1. Repeat until small enough

1.1 Sort queries into sets V_j that have the same b bits at the end.

1. Repeat until small enough

1.1 Sort queries into sets V_j that have the same b bits at the end. 1.2 Pick one (\mathbf{a}', c') from V_j and add it to all the other samples in V_j .

1. Repeat until small enough

1.1 Sort queries into sets V_j that have the same b bits at the end. 1.2 Pick one (\mathbf{a}', c') from V_j and add it to all the other samples in V_j .

2. Throw out all samples that have more than one bit set in **a**.

1. Repeat until small enough

1.1 Sort queries into sets V_j that have the same b bits at the end. 1.2 Pick one (\mathbf{a}', c') from V_j and add it to all the other samples in V_j .

2. Throw out all samples that have more than one bit set in **a**.

3. For 0 < j < b, sort into sets W_j that have $\mathbf{a}_j = 1$.

1. Repeat until small enough

1.1 Sort queries into sets V_j that have the same *b* bits at the end. 1.2 Pick one (\mathbf{a}', c') from V_j and add it to all the other samples in V_j .

2. Throw out all samples that have more than one bit set in **a**.

- 3. For 0 < j < b, sort into sets W_j that have $\mathbf{a}_j = 1$.
- **4**. Decide \mathbf{s}_i by the majority of the *c* in W_i

1. Repeat until small enough

1.1 Sort queries into sets V_j that have the same *b* bits at the end. 1.2 Pick one (\mathbf{a}', c') from V_j and add it to all the other samples in V_j .

2. Throw out all samples that have more than one bit set in **a**.

- 3. For 0 < j < b, sort into sets W_j that have $\mathbf{a}_j = 1$.
- **4**. Decide \mathbf{s}_j by the majority of the *c* in W_j

The LF1 algorithm [LF06]

- 1. Repeat until small enough
 - 1.1 Sort queries into sets V_i that have the same b bits at the end.
 - 1.2 Pick one (\mathbf{a}', c') from V_j and add it to all the other samples in V_j .

The LF1 algorithm [LF06]

- 1. Repeat until small enough
 - 1.1 Sort queries into sets V_i that have the same b bits at the end.
 - 1.2 Pick one (\mathbf{a}', c') from V_j and add it to all the other samples in V_j .

2. Apply mathematical magic (Walsh-Hadamard transform) to recover s_1, \ldots, s_b .

The LF1 algorithm [LF06]

Solve an LPN_{k,τ} problem, given *n* samples.

1. Apply reduction algorithm and obtain $LPN_{k',\tau'}$ problem with n' samples.

Solve an LPN_{k,τ} problem, given *n* samples.

1. Apply reduction algorithm and obtain $LPN_{k',\tau'}$ problem with n' samples.

2. Apply solving algorithm consuming n' samples.

Solve an LPN_{k,τ} problem, given *n* samples.

1. Apply reduction algorithm and obtain $LPN_{k',\tau'}$ problem with n' samples.

- 2. Apply solving algorithm consuming n' samples.
- \rightarrow obtain information on s.

Solve an LPN_{k,τ} problem, given *n* samples.

1. Apply reduction algorithm and obtain $LPN_{k',\tau'}$ problem with n' samples.

- 2. Apply solving algorithm consuming n' samples.
- \rightarrow obtain information on s.

Solve an LPN_{k,τ} problem, given *n* samples.

1. Apply reduction algorithm and obtain $LPN_{k',\tau'}$ problem with n' samples.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- 2. Apply solving algorithm consuming n' samples.
- \rightarrow obtain information on s.

We may apply several reductions algorithms in sequence!

Complexity

(日本) (日本) (日本) (日本) (日本) (日本)

Main idea: Try to find an error-free set of samples and then simply apply Gaussian elimination.

Main idea: Try to find an error-free set of samples and then simply apply Gaussian elimination.

1. Take k samples (a, c) as invertible matrix A and vector c.

Main idea: Try to find an error-free set of samples and then simply apply Gaussian elimination.

- 1. Take k samples (a, c) as invertible matrix A and vector c.
- **2**. Compute $\mathbf{s}' = A^{-1} \cdot \mathbf{c}$.

Main idea: Try to find an error-free set of samples and then simply apply Gaussian elimination.

- 1. Take k samples (a, c) as invertible matrix A and vector c.
- **2**. Compute $\mathbf{s}' = A^{-1} \cdot \mathbf{c}$.
- 3. If Test(s') confirms it's error-free, we're done, else goto 1.

Main idea: Try to find an error-free set of samples and then simply apply Gaussian elimination.

- 1. Take k samples (a, c) as invertible matrix A and vector c.
- **2**. Compute $\mathbf{s}' = A^{-1} \cdot \mathbf{c}$.
- 3. If Test(s') confirms it's error-free, we're done, else goto 1.

Main idea: Try to find an error-free set of samples and then simply apply Gaussian elimination.

- 1. Take k samples (a, c) as invertible matrix A and vector c.
- **2**. Compute $\mathbf{s}' = A^{-1} \cdot \mathbf{c}$.

3. If Test(s') confirms it's error-free, we're done, else goto 1.

The Test(s') algorithm is as follows:

1. Take *m* samples (\mathbf{a}, c) and write them as matrix $A_{\text{test}}, \mathbf{c}_{\text{test}}$.

Main idea: Try to find an error-free set of samples and then simply apply Gaussian elimination.

- 1. Take k samples (a, c) as invertible matrix A and vector c.
- **2**. Compute $\mathbf{s}' = A^{-1} \cdot \mathbf{c}$.

3. If Test(s') confirms it's error-free, we're done, else goto 1. The Test(s') algorithm is as follows:

1. Take *m* samples (a, c) and write them as matrix $A_{\text{test}}, c_{\text{test}}$.

2. Compute $\mathbf{e}' = A_{\text{test}} \cdot \mathbf{s}' + \mathbf{c}_{\text{test}}$.

Main idea: Try to find an error-free set of samples and then simply apply Gaussian elimination.

1. Take k samples (a, c) as invertible matrix A and vector c.

2. Compute
$$\mathbf{s}' = A^{-1} \cdot \mathbf{c}$$
.

3. If Test(s') confirms it's error-free, we're done, else goto 1.

The Test(s') algorithm is as follows:

1. Take *m* samples (a, c) and write them as matrix $A_{\text{test}}, c_{\text{test}}$.

2. Compute
$$\mathbf{e}' = A_{\text{test}} \cdot \mathbf{s}' + \mathbf{c}_{\text{test}}$$

• We know
$$A_{test} \cdot \mathbf{s} + \mathbf{e} = \mathbf{c}_{test}$$

Main idea: Try to find an error-free set of samples and then simply apply Gaussian elimination.

1. Take k samples (a, c) as invertible matrix A and vector c.

2. Compute
$$\mathbf{s}' = A^{-1} \cdot \mathbf{c}$$
.

3. If ${\tt Test}(s')$ confirms it's error-free, we're done, else goto 1.

The Test(s') algorithm is as follows:

- 1. Take *m* samples (a, c) and write them as matrix $A_{\text{test}}, c_{\text{test}}$.
- 2. Compute $\mathbf{e}' = A_{\text{test}} \cdot \mathbf{s}' + \mathbf{c}_{\text{test}}$.

• We know
$$A_{\mathsf{test}} \cdot \mathbf{s} + \mathbf{e} = \mathbf{c}_{\mathsf{test}}$$

• We also know **e** will have roughly $m \cdot \tau$ bits flipped

Main idea: Try to find an error-free set of samples and then simply apply Gaussian elimination.

1. Take k samples (a, c) as invertible matrix A and vector c.

2. Compute
$$\mathbf{s}' = A^{-1} \cdot \mathbf{c}$$
.

3. If Test(s') confirms it's error-free, we're done, else goto 1.

The Test(s') algorithm is as follows:

1. Take *m* samples (a, c) and write them as matrix $A_{\text{test}}, c_{\text{test}}$.

2. Compute
$$\mathbf{e}' = A_{\text{test}} \cdot \mathbf{s}' + \mathbf{c}_{\text{test}}$$

• We know $A_{\text{test}} \cdot \mathbf{s} + \mathbf{e} = \mathbf{c}_{\text{test}}$

- We also know **e** will have roughly $m \cdot \tau$ bits flipped
- 3. If e' has approximately $m \cdot \tau$ bits flipped, probably $\mathbf{s}' = \mathbf{s}$

1. Take $n = k^2 \log^2 k$ samples as a sample pool.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1. Take $n = k^2 \log^2 k$ samples as a sample pool.
- 2. Randomly take k samples (a, c) from the pool as invertible matrix A and vector c.

- 1. Take $n = k^2 \log^2 k$ samples as a sample pool.
- 2. Randomly take k samples (a, c) from the pool as invertible matrix A and vector c.

3. Compute $\mathbf{s}' = A^{-1} \cdot \mathbf{c}$.

- 1. Take $n = k^2 \log^2 k$ samples as a sample pool.
- 2. Randomly take k samples (a, c) from the pool as invertible matrix A and vector c.
- **3**. Compute $\mathbf{s}' = A^{-1} \cdot \mathbf{c}$.
- 4. If Test(s') confirms it's error-free, we're done, else goto 1.

- 1. Take $n = k^2 \log^2 k$ samples as a sample pool.
- 2. Randomly take k samples (a, c) from the pool as invertible matrix A and vector c.
- **3**. Compute $\mathbf{s}' = A^{-1} \cdot \mathbf{c}$.
- 4. If Test(s') confirms it's error-free, we're done, else goto 1.

- 1. Take $n = k^2 \log^2 k$ samples as a sample pool.
- 2. Randomly take k samples (a, c) from the pool as invertible matrix A and vector c.
- **3**. Compute $\mathbf{s}' = A^{-1} \cdot \mathbf{c}$.
- 4. If Test(s') confirms it's error-free, we're done, else goto 1.

 \rightsquigarrow Needs much less samples.

- 1. Take $n = k^2 \log^2 k$ samples as a sample pool.
- 2. Randomly take k samples (a, c) from the pool as invertible matrix A and vector c.
- **3**. Compute $\mathbf{s}' = A^{-1} \cdot \mathbf{c}$.
- 4. If Test(s') confirms it's error-free, we're done, else goto 1.
- \rightsquigarrow Needs much less samples.

This algorithm is an *Information-Set Decoding* algorithm: it finds an error-free index set in the pool. Notably, it resembles the [Pra62] algorithm.

Complexities

To solve LPN_{k,τ}:

	n Samples	Time	Memory
	$20\cdot \ln(4k)\cdot 2^b\cdot (1-2\tau)^{-2^a}$	kan	kn
LF1	$(8b + 2000) (1 - 2\tau)^{-2^{a}} + (a - 1)2^{b}$	kan + b2 ^b	$kn + b2^b$
Gauss	$k \cdot l + m$	$\left(k^3 + km\right)I$	$k^2 + km$
Pooled	$k^2 \log^2 k + m$	$(k^3 + km)$ I	$k^2 \log^2 k + km$
Gauss		· · · · ·	_

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Gauss needs $I = O\left(\frac{\log_2^2 k}{(1-\tau)^k}\right)$ iterations to find a solution.

Complexity

Covering Codes

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Covering-codes reduction

Covering-codes reduction

This allows us to reduce a *k*-size LPN problem with noise τ to a *k'*-sized LPN problem with noise τ' . This new noise τ' is strongly dependent on the code used. We measure the impact as bc. ($0 \le bc \le 1$, larger is better)

Finding codes for the reduction

• We need a code that allows us to reduce from k to k'.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Finding codes for the reduction

- We need a code that allows us to reduce from k to k'.
- ▶ We could use random codes, but they are hard to decode.

Finding codes for the reduction

- We need a code that allows us to reduce from k to k'.
- ▶ We could use random codes, but they are hard to decode.
- ► (Quasi-)Perfect codes give the best bc, but only few are known.

Coded Gauss

1. Apply covering-codes reduction to reduce problem size from k to k'.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

2. Recover secret using Gauss

Coded Gauss

- 1. Apply covering-codes reduction to reduce problem size from k to k'.
- 2. Recover secret using Gauss

The complexity of this algorithm:

• We will need
$$I = O\left(\frac{\log_2^2 k}{(1-\tau')^{k'}}\right)$$
 attempts before we find k' error-free samples.

Coded Gauss

- Apply covering-codes reduction to reduce problem size from k to k'.
- 2. Recover secret using Gauss

The complexity of this algorithm:

• We will need $I = O\left(\frac{\log_2^2 k}{(1-\tau')^{k'}}\right)$ attempts before we find k' error-free samples.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Gauss needs $n = k' \cdot I + m$ samples.

Coded Gauss

- Apply covering-codes reduction to reduce problem size from k to k'.
- 2. Recover secret using Gauss

The complexity of this algorithm:

• We will need $I = O\left(\frac{\log_2^2 k}{(1-\tau')^{k'}}\right)$ attempts before we find k' error-free samples.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Gauss needs $n = k' \cdot I + m$ samples.
- In each Gauss iteration we do $k^3 + k \cdot m$ work

Coded Gauss

- Apply covering-codes reduction to reduce problem size from k to k'.
- 2. Recover secret using Gauss

The complexity of this algorithm:

• We will need $I = O\left(\frac{\log_2^2 k}{(1-\tau')^{k'}}\right)$ attempts before we find k' error-free samples.

- Gauss needs $n = k' \cdot I + m$ samples.
- In each Gauss iteration we do $k^3 + k \cdot m$ work
- ▶ We will need to decode all the *n* samples as well

Coded Gauss

- Apply covering-codes reduction to reduce problem size from k to k'.
- 2. Recover secret using Gauss

The complexity of this algorithm:

• We will need $I = O\left(\frac{\log_2^2 k}{(1-\tau')^{k'}}\right)$ attempts before we find k' error-free samples.

- Gauss needs $n = k' \cdot I + m$ samples.
- In each Gauss iteration we do $k^3 + k \cdot m$ work
- ▶ We will need to decode all the *n* samples as well
- \rightarrow Time complexity $O(n + (k^3 + k \cdot m) \cdot I)$

How 'good' should a code be?

Let's assume we have arbitrary [k, k'] codes.

How 'good' should a code be?

Let's assume we have arbitrary [k, k'] codes. We have the following inequality

 $T_{Gauss}(k, \tau) \geq T_{Coded Gauss}(k, k', \tau, bc)$

How 'good' should a code be?

Let's assume we have arbitrary [k, k'] codes.

Figure: Minimal bc before Coded Gauss is faster than applying Gauss to the full problem. $k = 512, \tau = \frac{1}{8}$.

Assume we have arbitrary, (quasi-)perfect codes.

Assume we have arbitrary, (quasi-)perfect codes.

$$\mathsf{bc} \le 2^{k'-k} \sum_{w=0}^{R} \binom{k}{w} \left(\delta_s^w - \delta_s^{R+1} \right) + \delta_s^{R+1}.$$

Here, *R* is a property we can bound for quasi-perfect codes (Hamming Bound [Ham50]) and $\delta_s = 1 - 2\tau$.

Assume we have arbitrary, (quasi-)perfect codes.

Figure: Minimal bc and the bc obtained at the Hamming bound for various τ . $k = 512, \delta = \delta_s = 1 - 2\tau$.

Assume we have arbitrary, (quasi-)perfect codes.

Figure: Minimal bc and the bc obtained at the Hamming bound for various τ . $k = 512, \delta = \delta_s = 1 - 2\tau$.

Coded Gauss doesn't work

In conclusion, the following:

1. Apply covering code to reduce to k'-sized problem

2. Use Gauss to solve the problem

isn't faster than only applying step 2.

Coded Gauss doesn't work

In conclusion, the following:

- 1. Apply covering code to reduce to k'-sized problem
- 2. Use Gauss to solve the problem

isn't faster than only applying step 2.

Note

Our analysis was limited to the above algorithm. We have results that show the following *may* work

- 1. Apply some reduction to reduce to a k'-sized problem with noise τ'
- 2. Apply covering code to reduce to k''-sized problem with noise τ''

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

3. Use Gauss to solve the problem

Coded Gauss doesn't work

In conclusion, the following:

- 1. Apply covering code to reduce to k'-sized problem
- 2. Use Gauss to solve the problem

isn't faster than only applying step 2.

Note

Our analysis was limited to the above algorithm. We have results that show the following *may* work

- 1. Apply some reduction to reduce to a k'-sized problem with noise τ'
- 2. Apply covering code to reduce to k''-sized problem with noise τ''
- 3. Use Gauss to solve the problem

However, we would also need to include the complexity of step 1 when analysing this combination.

Outline

Intro

Learning Parity with Noise

Breaking LPN The covering-codes reduction

Covering Codes

Combinations of reductions

What we are working on

Improving the performance of the covering-codes reduction

The covering-codes reduction as originally proposed:

- 1. Apply covering-codes reduction
- 2. Recover information on s using Walsh-Hadamard Transform.

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

Improving the performance of the covering-codes reduction

The covering-codes reduction as originally proposed:

- 1. Apply covering-codes reduction
- 2. Recover information on ${\bf s}$ using Walsh-Hadamard Transform.

Picking codes is hard. Much of the work around this attack has been on finding the right codes to instantiate attacks.

Concatenated Codes

Current attacks use concatenations of small perfect codes to construct larger [k, k'] codes.

Example

We construct the following [12,4] code from [3,1] repetion codes with generator $\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$:

$$\begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

Concatenated Codes

Current attacks use concatenations of small perfect codes to construct larger [k, k'] codes.

Example

We construct the following [12,4] code from [3,1] repetion codes with generator $\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$:

$$\begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

The bc of concatenated codes is the product of the bc of the smaller codes.

Concatenated Codes (cont.)

Example

We construct the following [12,4] code from [3,1] repetion codes with generator $\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$:

$$\begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

Decoding Algorithm

- 1. Generate look up tables for the small codes
- 2. Split your vector along the small codes
- 3. Look up the codewords for the individual pieces in the lookup tables
- 4. Concatenate

StGen codes

Samardjiska and Gliogoski proposed an improvement on these concatenations of codes. We add random noise on top of the blocks.

Simona proposed using these codes with the covering-codes reduction at a department lunch talk.

Decoding algorithm sketch

1. Set maximum error weights and limits

(2)

Decoding algorithm sketch

- 1. Set maximum error weights and limits
- 2. Split vector into pieces

Decoding algorithm sketch

- 1. Set maximum error weights and limits
- 2. Split vector into pieces
- Produce all candidate codewords and error vectors for first block B₁

Decoding algorithm sketch

- 1. Set maximum error weights and limits
- 2. Split vector into pieces
- Produce all candidate codewords and error vectors for first block B₁
- 4. Multiply each of these by B'_2 to account for that random noise

Decoding algorithm sketch

- 1. Set maximum error weights and limits
- 2. Split vector into pieces
- Produce all candidate codewords and error vectors for first block B₁
- 4. Multiply each of these by B'_2 to account for that random noise
- 5. Generate all the candidates for B_2

Decoding algorithm sketch

- 1. Set maximum error weights and limits
- 2. Split vector into pieces
- Produce all candidate codewords and error vectors for first block B₁
- 4. Multiply each of these by B'_2 to account for that random noise
- 5. Generate all the candidates for B_2
- 6. Increase maximum weights if you have few candidates for the next round.

Decoding is not trivial

Decoding algorithm based on list decoding [SG17]

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Decoding is not trivial

Decoding algorithm based on list decoding [SG17]

Highly tweakable

Decoding is not trivial

- Decoding algorithm based on list decoding [SG17]
- Highly tweakable
- Because of the random elements we can no longer directly compute bc.

Decoding is not trivial

- Decoding algorithm based on list decoding [SG17]
- Highly tweakable
- Because of the random elements we can no longer directly compute bc.
 - ▶ For random codes computing bc is a hugely expensive operation.

Decoding is not trivial

- Decoding algorithm based on list decoding [SG17]
- Highly tweakable
- Because of the random elements we can no longer directly compute bc.
 - ▶ For random codes computing bc is a hugely expensive operation.

We instead estimate it over a number of random vectors

Outline

Intro

Learning Parity with Noise

Breaking LPN The covering-codes reduction

Covering Codes

Combinations of reductions

What we are working on

Finding reduction chains

Bogos and Vaudenay propose a search algorithm for finding combinations of reductions:

Figure: Finding chains of reductions [Bog17].

Improving the performance of an attack

Bogos and Vaudenay propose a combination of reductions to solve LPN_{512, $\frac{1}{6}$} in $\mathcal{O}(2^{78.85})$ time using $2^{63.3}$ samples.

Improving the performance of an attack

Bogos and Vaudenay propose a combination of reductions to solve LPN_{512, $\frac{1}{6}$} in $\mathcal{O}(2^{78.85})$ time using $2^{63.3}$ samples.

Step	k	log ₂ n	1-2 au	δ_s	Algorithm
1	512	63.3	0.75	0	sparse-secret
2	512	63.3	0.75	0.75	xor-reduce $(b = 59)$
3	453	66.6	0.5625	0.75	xor-reduce $(b = 65)$
4	388	67.2	0.3164	0.75	xor-reduce $(b = 66)$
5	322	67.4	0.1001	0.75	xor-reduce $(b = 66)$
6	256	67.8	0.0100	0.75	xor-reduce $(b = 67)$
7	189	67.6	0.0001	0.75	covering-codes
8	64	67.6	$8.8\cdot10^{-10}$		FWHT

Table: The full solving chain of Bogos and Vaudenay [BV16; BV] on LPN_{512, $\frac{1}{8}$}. In step 7 they apply a [189, 64] covering code with bc = $8.78 \cdot 10^{-6}$.

The last reduction applied uses a number of random codes.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The last reduction applied uses a number of random codes.

Table: bc for the small random codes used in the solving algorithm for LPN_{512, $\frac{1}{8}$} [BV16; BV].

Code	Count	bc $(\tau = \frac{1}{8})$)
[18,6]	1	0.32378292083740	2
[19,6]	5	0.29175499081611	6
[19, 7]	4	0.33630311489105	2

The bc of the concatenated code is

 $bc = 0.323^1 \cdot 0.292^5 \cdot 0.336^4 = 8.78 \cdot 10^{-6}.$

The bc of this StGen code is approximated to

bc
$$\approx 3.8 \cdot 10^{-5}$$
.

Using $bc = 3.8 \cdot 10^{-5}$ we improve the performance of the algorithm.

 $\begin{array}{c|c} & \mbox{Original} & \mbox{With StGen code} \\ \hline \mbox{Time} & \mathcal{O}\left(2^{78.85}\right) & \mathcal{O}\left(2^{78.1}\right) \\ \mbox{Samples} & 2^{63.3} & 2^{63.2} \end{array}$

Table: Improved attack on $LPN_{512,\frac{1}{2}}$

Using $bc = 3.8 \cdot 10^{-5}$ we improve the performance of the algorithm.

	Original	With StGen code
Time Samples	$\mathcal{O}\left(2^{78.85} ight)_{2^{63.3}}$	$\mathcal{O}\left(2^{78.1} ight)_{2^{63.2}}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Table: Improved attack on $LPN_{512,\frac{1}{2}}$

But: we assumed that decoding takes $\mathcal{O}(1)$ time!

Using $bc = 3.8 \cdot 10^{-5}$ we improve the performance of the algorithm.

Table: Improved attack on $LPN_{512,\frac{1}{8}}$

	Original	With StGen code
Time Samples	$\mathcal{O}\left(2^{78.85} ight)\ 2^{63.3}$	$\mathcal{O}\left(2^{78.1} ight)_{2^{63.2}}$

But: we assumed that decoding takes $\mathcal{O}(1)$ time!

Table: Decoding times

Base codes	Concatenated	StGen
B&V	0.2 ms	

Using $bc = 3.8 \cdot 10^{-5}$ we improve the performance of the algorithm.

Table: Improved attack on $LPN_{512,\frac{1}{8}}$

	Original	With StGen code
Time Samples	$\mathcal{O}\left(2^{78.85} ight)\ 2^{63.3}$	$\mathcal{O}\left(2^{78.1} ight)_{2^{63.2}}$

But: we assumed that decoding takes $\mathcal{O}(1)$ time!

Table: Decoding times

Base codes	Concatenated	StGen
B&V	0.2 ms	± 500000 ms

Using $bc = 3.8 \cdot 10^{-5}$ we improve the performance of the algorithm.

Table: Improved attack on $LPN_{512,\frac{1}{8}}$

	Original	With StGen code
Time Samples	$\mathcal{O}\left(2^{78.85} ight)\ 2^{63.3}$	$\mathcal{O}\left(2^{78.1} ight)_{2^{63.2}}$

But: we assumed that decoding takes $\mathcal{O}(1)$ time!

Table: Decoding times

Base codes	Concatenated	StGen
B&V	0.2 ms	± 500000 ms
Small perfect	0.009 ms	20–100 ms

Outline

Intro

Learning Parity with Noise

Breaking LPN The covering-codes reduction

Covering Codes

Combinations of reductions

What we are working on

Finding reduction chains

Bogos and Vaudenay propose a search algorithm for finding combinations of reductions:

Figure: Finding chains of reductions [Bog17].

Finding new reduction chains

Bogos and Vaudenay propose a search algorithm for finding combinations of reductions:

Figure: Finding chains of reductions with Gauss [Bog17].

Memory consumption of m

Software

We developed software that allows to implement LPN solving algorithms.

// Create LPN oracle with k=32 and tau=1/32let mut oracle = LpnOracle::new(32, 1.0 / 32.0); oracle.get_samples(1000); // apply the LF2 `xor_reduce' reduction // using b = 8 three times xor_reduction(&mut oracle, 8); xor_reduction(&mut oracle, 8); xor_reduction(&mut oracle, 8); // solve using two techniques let fwht_solution = fwht_solve(oracle.clone()); let gauss_solution = pooled_gauss_solve(oracle);

Available via https://thomwiggers.nl/research/msc-thesis/.

Conclusions

 Solving LPN not only costs a lot of time, but also a lot of memory.

Work in progress

Conclusions

- Solving LPN not only costs a lot of time, but also a lot of memory.
- Combining the covering-codes reduction with Gauss does not work.

Work in progress

Conclusions

- Solving LPN not only costs a lot of time, but also a lot of memory.
- Combining the covering-codes reduction with Gauss does not work.
 - At least, in the combinations we presented

Work in progress

Conclusions

- Solving LPN not only costs a lot of time, but also a lot of memory.
- Combining the covering-codes reduction with Gauss does not work.
 - At least, in the combinations we presented
- We can improve the theoretical performance of solving algorithms using StGen codes

Work in progress

Conclusions

- Solving LPN not only costs a lot of time, but also a lot of memory.
- Combining the covering-codes reduction with Gauss does not work.
 - At least, in the combinations we presented
- We can improve the theoretical performance of solving algorithms using StGen codes
 - But StGen codes decode so much slower that it's not faster in practice

Work in progress

Conclusions

- Solving LPN not only costs a lot of time, but also a lot of memory.
- Combining the covering-codes reduction with Gauss does not work.
 - At least, in the combinations we presented
- We can improve the theoretical performance of solving algorithms using StGen codes
 - But StGen codes decode so much slower that it's not faster in practice

Work in progress

 Find combinations of reductions that do work with Gauss

Conclusions

- Solving LPN not only costs a lot of time, but also a lot of memory.
- Combining the covering-codes reduction with Gauss does not work.
 - At least, in the combinations we presented
- We can improve the theoretical performance of solving algorithms using StGen codes
 - But StGen codes decode so much slower that it's not faster in practice

Work in progress

- Find combinations of reductions that do work with Gauss
- Adapt Bogos and Vaudenay's reduction chain finding algorithm to consider memory consumption

Conclusions

- Solving LPN not only costs a lot of time, but also a lot of memory.
- Combining the covering-codes reduction with Gauss does not work.
 - At least, in the combinations we presented
- We can improve the theoretical performance of solving algorithms using StGen codes
 - But StGen codes decode so much slower that it's not faster in practice

Work in progress

- Find combinations of reductions that do work with Gauss
- Adapt Bogos and Vaudenay's reduction chain finding algorithm to consider memory consumption
- Add StGen codes to the reduction finding algorithm to find better-optimised solving algorithms.

Conclusions

- Solving LPN not only costs a lot of time, but also a lot of memory.
- Combining the covering-codes reduction with Gauss does not work.
 - At least, in the combinations we presented
- We can improve the theoretical performance of solving algorithms using StGen codes
 - But StGen codes decode so much slower that it's not faster in practice

Work in progress

- Find combinations of reductions that do work with Gauss
- Adapt Bogos and Vaudenay's reduction chain finding algorithm to consider memory consumption
- Add StGen codes to the reduction finding algorithm to find better-optimised solving algorithms.

Conclusions

- Solving LPN not only costs a lot of time, but also a lot of memory.
- Combining the covering-codes reduction with Gauss does not work.
 - At least, in the combinations we presented
- We can improve the theoretical performance of solving algorithms using StGen codes
 - But StGen codes decode so much slower that it's not faster in practice

Work in progress

- Find combinations of reductions that do work with Gauss
- Adapt Bogos and Vaudenay's reduction chain finding algorithm to consider memory consumption
- Add StGen codes to the reduction finding algorithm to find better-optimised solving algorithms.

Thank you for your attention

Outline

Backup slides

BKW algorithm LF1 algorithm LF2 algorithm Gauss vs Coded Gauss Memory consumption StGen code decoding

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Bibliography

The BKW algorithm

Input: A set V of n samples (a, c) from $\mathcal{O}_{s,t}^{\text{LPN}}$, a, b s.t. $k \ge ab$ 1 for i = 1 to a - 1 do // Reduction (partition-reduce): Partition $V = V_1 \cup \cdots \cup V_{2^b}$ s.t. they all have the same bit 2 values on the last *ib* bits foreach V_i do 3 4 Choose a $(a', c') \in V_j$ 5 Replace all other (Replace all other $(\mathbf{a}, c) \in V_i$ by $(\mathbf{a} + \mathbf{a}', c + c')$ Discard (\mathbf{a}', c') 6 // Solving phase (majority): 7 Discard all samples (\mathbf{a}, c) from V where $HW(\mathbf{a}) \neq 1$ **8** Divide V into b partitions, such that vectors $\mathbf{a} \in V_i$ have $\mathbf{a}_i = 1$ 9 for i = 1 to b do $\mathbf{s}_i = \text{majority}(c)$, for all $(\mathbf{a}, c) \in V_i$ 10 11 return $s_1, ..., s_b$

LF1 algorithm

Algorithm 1: The LF1 algorithm as presented in [BTV15]

Input: A set V of n samples
$$(\mathbf{a}, c)$$
 from $\mathcal{O}_{\mathbf{s}, t}^{\text{LPN}}$,
a, b s.t. $k = ab$
Output: $(\mathbf{s}_1, \dots, \mathbf{s}_a)$ from s

1 Run a-1 iterations of partition-reduce as in the BKW algorithm

// Solving Phase (FWHT):
2
$$f(\mathbf{x}) = \sum_{(\mathbf{a},c)\in V} 1_{V_{1,...,b}=\mathbf{x}}(-1)^{c}$$

3 $\hat{f}(\mathbf{x}) = \sum_{x} (-1)^{\langle \mathbf{a},\mathbf{x} \rangle} f(x)$
4 return $(\mathbf{s}_{1},...,\mathbf{s}_{b}) = \arg \max_{\mathbf{a}\in\mathbb{Z}_{2}^{b}}(\hat{f}(\mathbf{a}))$

LF2 algorithm

Algorithm 2: The LF2 algorithm [LF06]

```
Input: A set V of n samples (\mathbf{a}, c) from \mathcal{O}_{\mathbf{s},t}^{\text{LPN}},
a, b s.t. k = ab
   Output: (s_1, \ldots, s_b) from s
1 for i = 1 to a - 1 do
2
        Partition V = V_1 \cup \cdots \cup V_{2^b} s.t. they all have the same bit
          values on the last ib bits
        foreach V_i do
3
             V'_i = \emptyset
4
             for (a, c), (a', c') \in V_i, (a, c) \neq (a', c') do
5
             V'_i = V'_i \cup \{(\mathbf{a} + \mathbf{a}', c + c')\}
6
        V = V_1' \cup \cdots \cup V_{2^b}'
7
   // Solving Phase (FWHT) [..]
8 return (\mathbf{s}_1, \ldots, \mathbf{s}_b) = \arg \max(\hat{f}(\mathbf{a}))
```

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□► ◇◇◇

Gauss

1 Function Gauss ($\mathcal{O}_{\mathbf{s}.\tau}^{\text{LPN}}$, τ) 2 2 repeat 3 repeat 3 $| (A, \mathbf{c}) \leftarrow (\mathcal{O}_{\mathbf{s}, \tau}^{\mathsf{LPN}})^k$ 4 5 6 until A is full rank 4 $\mathbf{s}' = A^{-1}\mathbf{c}$ until Test(s', τ , $\frac{1}{2^k}$, $\left(\frac{1-\tau}{2}\right)^k$) $\frac{5}{6}$ 7 B return s' 7 8

1 Function Test (s',
$$\tau$$
, α , β)
2 $m = \left(\frac{\sqrt{\frac{3}{2}\ln\left(\frac{1}{\alpha}\right)} + \sqrt{\ln\frac{1}{\beta}}}{\frac{1}{2} - \tau}\right)^2$;
3 $c = \tau m + \sqrt{3\left(\frac{1}{2} - \tau\right)\ln\left(\frac{1}{\alpha}\right)m};$
4 $(A, c) \leftarrow \left(\mathcal{O}_{s,\tau}^{LPN}\right)^m;$
5 $\text{if } HW(As' + c) \leq c \text{ then}$
6 $| \text{ return } True;$
7 else
8 $| \text{ return } False;$

Pooled Gauss

```
1 Function PooledGauss (\mathcal{O}_{\mathbf{s},\tau}^{\text{LPN}}, \tau)
           P \leftarrow \left(\mathcal{O}_{\mathbf{s},\tau}^{\mathsf{LPN}}\right)^{k^2 \log_2 k}
2
3
            repeat
4
                   repeat
                   (A, \mathbf{c}) \xleftarrow{U} P
5
                  until A is full rank
6
                  \mathbf{s}' = A^{-1}\mathbf{c}
7
            until Test(s', \tau, \frac{1}{2^k}, \left(\frac{1-\tau}{2}\right)^k)
8
            return s'
9
```

When is Coded Gauss faster

$$\frac{\left(k^3+km\right)\log_2^2 k}{\left(\frac{1}{2}+\frac{1}{2}\delta\right)^k} \geq \frac{\left(k'^3+k'm\right)\log_2^2 k'}{\left(\frac{1}{2}+\frac{1}{2}\delta \mathsf{bc}\right)^{k'}}+m+n.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回▶ ●○○

Memory consumption of m

StGen decoding

Input: w_1 , w_b , w_{inc} , G, L_{max} , $\mathbf{c} \in \mathbb{F}_2^n$. **Output:** A close codeword of **c** Let $K_i = \sum_{i=1}^i k_i$, $N_i = \sum_{i=1}^i n_i$ and let G_i be the 'small code' $(I_{k_i}|B_i)$. 1 $L_0 = \{(\mathbf{x}_0, \mathbf{e}_0)\}, \mathbf{x}_0, \mathbf{e}_0$ are zero-dimensional vectors. 2 for i = 1 to v do foreach $(\mathbf{x}_{i-1}, \mathbf{e}_{i-1})$ in L_{i-1} do 3 $\mathbf{b} = (\mathbf{c}_{K_{i-1}}, \ldots, \mathbf{c}_{K_i}) || (\mathbf{x}_{i-1}B'_i + (\mathbf{c}_{k+N_i}, \ldots, \mathbf{c}_{k+N_i}))$ 4 \max -wt = min($w_i - HW(\mathbf{e}_{i-1}), w_b$) 5 foreach $e' \in \left\{ \mathbf{v} \in \mathbb{F}_2^{n_i+k_i} \mid HW(\mathbf{v}) \leq max\text{-}wt \right\}$ do 6 Find **x**' s.t. $\mathbf{x}' G_i + \mathbf{b} = \mathbf{e}'$ 7 $\mathbf{e}_{\mathrm{new}} = \left((\mathbf{e}_{i-1})_1, \dots, (\mathbf{e}_{i-1})_{K_{i-1}}, \mathbf{e}_1', \dots, \mathbf{e}_{k_i}', \right)$ 8 $(\mathbf{e}_{i-1})_{K_{i-1}}, \dots, (\mathbf{e}_{i-1})_{K_{i-1}+N_{i-1}}, \mathbf{e}'_{k_i}, \dots, \mathbf{e}'_{k_i+n_i}$ Add $(\mathbf{x}_{i-1} || \mathbf{x}', \mathbf{e}_{new})$ to L_i 9 if $|L_i| < L_{\max}$ then $w_{i+1} = w_i + w_{inc}$ else $w_{i+1} = w_i$ 10 11 return x from $(x, e) \in L_v$ where HW(e) is minimal Algorithm 3: List-decoding StGen codes [SG15]

Outline

Backup slides

BKW algorithm LF1 algorithm LF2 algorithm Gauss vs Coded Gauss Memory consumption StGen code decoding

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Bibliography

Bibliography I

- [BKW00] Avrim Blum, Adam Kalai and Hal Wasserman. 'Noise-tolerant learning, the parity problem, and the statistical query model'. In: 32nd ACM STOC. ACM Press, May 2000, pp. 435–440.
- [Bog17] Sonia Bogos. 'LPN in Cryptography: an Algorithmic Study'. PhD thesis. École Polytechnique Fédérale De Lausanne, 2017. URL: https://infoscience.epfl. ch/record/228977/files/EPFL_TH7800.pdf.
- [BTV15] Sonia Bogos, Florian Tramer and Serge Vaudenay. On Solving LPN using BKW and Variants. Cryptology ePrint Archive, Report 2015/049. http://eprint.iacr.org/2015/049. 2015.
- [BV] Sonia Bogos and Serge Vaudenay. Optimization of LPN Solving Algorithms: Additional material. URL: https://infoscience.epfl.ch/record/223773/ files/additional_material.pdf?version=1.

Bibliography II

 [BV16] Sonia Bogos and Serge Vaudenay. 'Optimization of LPN Solving Algorithms'. In: ASIACRYPT 2016, Part I.
 Ed. by Jung Hee Cheon and Tsuyoshi Takagi. Vol. 10031.
 LNCS. Springer, Heidelberg, Dec. 2016, pp. 703–728.
 DOI: 10.1007/978-3-662-53887-6_26.

[EKM17] Andre Esser, Robert Kübler and Alexander May. 'LPN Decoded'. In: CRYPTO 2017, Part II. Ed. by Jonathan Katz and Hovav Shacham. Vol. 10402. LNCS. Springer, Heidelberg, Aug. 2017, pp. 486–514.

[Ham50] Richard W. Hamming. 'Error detecting and error correcting codes'. In: The Bell System Technical Journal 29.2 (Apr. 1950), pp. 147–160. DOI: 10.1002/j.1538-7305.1950.tb00463.x.

Bibliography III

[LF06] Éric Levieil and Pierre-Alain Fouque. 'An Improved LPN Algorithm'. In: SCN 06. Ed. by Roberto De Prisco and Moti Yung. Vol. 4116. LNCS. Springer, Heidelberg, Sept. 2006, pp. 348–359.

[Pra62] Eugene Prange. 'The use of information sets in decoding cyclic codes'. In: IRE Transactions on Information Theory 8.5 (Sept. 1962), pp. 5–9. DOI: 10.1109/TIT.1962.1057777.

[Reg05] Oded Regev. 'On lattices, learning with errors, random linear codes, and cryptography'. In: 37th ACM STOC. Ed. by Harold N. Gabow and Ronald Fagin. ACM Press, May 2005, pp. 84–93.

Bibliography IV

[SG15] Simona Samardjiska and Danilo Gligoroski. 'Approaching maximum embedding efficiency on small covers using Staircase-Generator codes'. In: 2015 IEEE International Symposium on Information Theory (ISIT). June 2015, pp. 2752–2756. DOI: 10.1109/ISIT.2015.7282957.

[SG17] Simona Samardjiska and Danilo Gligoroski. 'A Robust List-Decoding Algorithm for Maximizing Embedding Efficiency for Arbitrary Payloads'. 2017.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・