
Solving LPN Using Large Covering Codes

Thom Wiggers

Radboud University, Nijmegen, The Netherlands

8th August 2019

Outline

Intro

Learning Parity with Noise
Breaking LPN
The covering-codes reduction

Covering Codes

Combinations of reductions

What we are working on

Post-quantum cryptography

Cryptography based on problems that are hard both for
classical and quantum computers.

Categories of mathematical problems
I Lattice-based
I Code-based
I Hash-based
I Multivariate
I Isogenies

Learning Parity with Noise falls in the code-based category.
We want to qualify how hard the LPN problem is.

Post-quantum cryptography

Cryptography based on problems that are hard both for
classical and quantum computers.

Categories of mathematical problems
I Lattice-based
I Code-based
I Hash-based
I Multivariate
I Isogenies

Learning Parity with Noise falls in the code-based category.
We want to qualify how hard the LPN problem is.

Post-quantum cryptography

Cryptography based on problems that are hard both for
classical and quantum computers.

Categories of mathematical problems
I Lattice-based
I Code-based
I Hash-based
I Multivariate
I Isogenies

Learning Parity with Noise falls in the code-based category.

We want to qualify how hard the LPN problem is.

Post-quantum cryptography

Cryptography based on problems that are hard both for
classical and quantum computers.

Categories of mathematical problems
I Lattice-based
I Code-based
I Hash-based
I Multivariate
I Isogenies

Learning Parity with Noise falls in the code-based category.
We want to qualify how hard the LPN problem is.

Primary school mathematics

All maths in this talk will be in base two:

I 0+ 0 =

I 1+ 0 = 0+ 1 =

I 1+ 1 =

So a+ b + b = a.

Also, 1−1 = 0 = 1+1

Primary school mathematics

All maths in this talk will be in base two:
I 0+ 0 = 0

I 1+ 0 = 0+ 1 =

I 1+ 1 =

So a+ b + b = a.

Also, 1−1 = 0 = 1+1

Primary school mathematics

All maths in this talk will be in base two:
I 0+ 0 = 0

I 1+ 0 = 0+ 1 =

I 1+ 1 =

So a+ b + b = a.

Also, 1−1 = 0 = 1+1

Primary school mathematics

All maths in this talk will be in base two:
I 0+ 0 = 0
I 1+ 0 = 0+ 1 = 1

I 1+ 1 =

So a+ b + b = a.

Also, 1−1 = 0 = 1+1

Primary school mathematics

All maths in this talk will be in base two:
I 0+ 0 = 0
I 1+ 0 = 0+ 1 = 1

I 1+ 1 =

So a+ b + b = a.

Also, 1−1 = 0 = 1+1

Primary school mathematics

All maths in this talk will be in base two:
I 0+ 0 = 0
I 1+ 0 = 0+ 1 = 1
I 1+ 1 = 0

So a+ b + b = a.

Also, 1−1 = 0 = 1+1

Primary school mathematics

All maths in this talk will be in base two:
I 0+ 0 = 0
I 1+ 0 = 0+ 1 = 1
I 1+ 1 = 0

So a+ b + b = a.

Also, 1−1 = 0 = 1+1

Primary school mathematics

All maths in this talk will be in base two:
I 0+ 0 = 0
I 1+ 0 = 0+ 1 = 1
I 1+ 1 = 0

So a+ b + b = a.

Also, 1−1 = 0 = 1+1

Primary school mathematics

All maths in this talk will be in base two:
I 0+ 0 = 0
I 1+ 0 = 0+ 1 = 1
I 1+ 1 = 0

So a+ b + b = a.

Also, 1−1 = 0 = 1+1

Outline

Intro

Learning Parity with Noise
Breaking LPN
The covering-codes reduction

Covering Codes

Combinations of reductions

What we are working on

Learning Parity without Noise

s ·




0 0 0 1 0 0
0 1 0 1 1 0
0 1 0 1 0 0
1 1 1 0 1 1
0 0 1 0 1 0
1 1 1 1 1 0




=
(
1 1 1 0 0 0

)

Learning Parity without Noise

Through the magic of Gaussian elimination

s =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



·
(
1 1 1 0 0 1

)
=
(
1 1 1 0 0 1

)

Learning Parity with Noise [Reg05]

We add some noise to the computations. We flip a bit using a biased
coin (Bernoulli distribution) that gives head (1) with probability τ .

s ·




0 0 0 1 0 0
0 1 0 1 1 0
0 1 0 1 0 0
1 1 1 0 1 1
0 0 1 0 1 0
1 1 1 1 1 0




+ e =
(
1 0 1 0 0 0

)

Suddenly, finding s is hard.
Hardness related to decoding random codes.

Learning Parity with Noise [Reg05]

We add some noise to the computations. We flip a bit using a biased
coin (Bernoulli distribution) that gives head (1) with probability τ .

s ·




0 0 0 1 0 0
0 1 0 1 1 0
0 1 0 1 0 0
1 1 1 0 1 1
0 0 1 0 1 0
1 1 1 1 1 0




+ e =
(
1 0 1 0 0 0

)

Suddenly, finding s is hard.
Hardness related to decoding random codes.

The LPN problem

Definition (LPN Oracle samples)
We have some LPN problem with secret s of length k bits. Our
biased ‘coin’ Berτ gives e = 1 with probability τ .

We obtain samples (a, c) such that

〈a, s〉 + e = c

where a is a k-bit uniformly random vector and e ← Berτ .

The LPN problem

Definition (LPN Oracle samples)
We have some LPN problem with secret s of length k bits. Our
biased ‘coin’ Berτ gives e = 1 with probability τ .
We obtain samples (a, c) such that

〈a, s〉 + e = c

where a is a k-bit uniformly random vector and e ← Berτ .

The LPN problem

Definition (LPN Oracle samples)
We have some LPN problem with secret s of length k bits. Our
biased ‘coin’ Berτ gives e = 1 with probability τ .
We obtain samples (a, c) such that

〈a, s〉 + e = c

where a is a k-bit uniformly random vector and e ← Berτ .

The LPN problem

Definition (LPN Oracle samples)
We have some LPN problem with secret s of length k bits. Our
biased ‘coin’ Berτ gives e = 1 with probability τ .
We obtain samples (a, c) such that

〈a, s〉 + e = c

where a is a k-bit uniformly random vector and e ← Berτ .




a1
a2
a3
a4
a5
a6



· s +




e1
e2
e3
e4
e5
e6




=




c1
c2
c3
c4
c5
c6




The LPN problem

Definition (LPN Oracle samples)
We have some LPN problem with secret s of length k bits. Our
biased ‘coin’ Berτ gives e = 1 with probability τ .
We obtain samples (a, c) such that

〈a, s〉 + e = c

where a is a k-bit uniformly random vector and e ← Berτ .

A · s + e = c

The LPN problem

Definition (LPN Oracle samples)
We have some LPN problem with secret s of length k bits. Our
biased ‘coin’ Berτ gives e = 1 with probability τ .
We obtain samples (a, c) such that

〈a, s〉 + e = c

where a is a k-bit uniformly random vector and e ← Berτ .

Definition (Search LPN Problem)
Given n samples (a, c), recover (information on) s.
We want to do this using at most t amount of time, n samples and
m memory.

The LPN problem

Definition (LPN Oracle samples)
We have some LPN problem with secret s of length k bits. Our
biased ‘coin’ Berτ gives e = 1 with probability τ .
We obtain samples (a, c) such that

〈a, s〉 + e = c

where a is a k-bit uniformly random vector and e ← Berτ .

Definition (Search LPN Problem)
Given n samples (a, c), recover (information on) s.
We want to do this using at most t amount of time, n samples and
m memory.

Familiar? LWE is the same problem over Zq.

The classic BKW algorithm [BKW00]

1. Repeat until small enough

1.1 Sort queries into sets Vj that have the same b bits at the end.
1.2 Pick one (a′, c ′) from Vj and add it to all the other samples in

Vj .
k

1 0 0 1 1 10 1 0 1 0 1
⊕ b

0 0 1 1 0 01 0 0 1 0 1

=

1 0 1 0 1 11 1 0 0 0 0
k′

2. Throw out all samples that have more than one bit set in a.
3. For 0 < j < b, sort into sets Wj that have aj = 1.
4. Decide sj by the majority of the c in Wj

The classic BKW algorithm [BKW00]

1. Repeat until small enough

1.1 Sort queries into sets Vj that have the same b bits at the end.
1.2 Pick one (a′, c ′) from Vj and add it to all the other samples in

Vj .
k

1 0 0 1 1 10 1 0 1 0 1
⊕ b

0 0 1 1 0 01 0 0 1 0 1

=

1 0 1 0 1 11 1 0 0 0 0
k′

2. Throw out all samples that have more than one bit set in a.
3. For 0 < j < b, sort into sets Wj that have aj = 1.
4. Decide sj by the majority of the c in Wj

The classic BKW algorithm [BKW00]

1. Repeat until small enough
1.1 Sort queries into sets Vj that have the same b bits at the end.

1.2 Pick one (a′, c ′) from Vj and add it to all the other samples in
Vj .

k

1 0 0 1 1 10 1 0 1 0 1
⊕ b

0 0 1 1 0 01 0 0 1 0 1

=

1 0 1 0 1 11 1 0 0 0 0
k′

2. Throw out all samples that have more than one bit set in a.
3. For 0 < j < b, sort into sets Wj that have aj = 1.
4. Decide sj by the majority of the c in Wj

The classic BKW algorithm [BKW00]

1. Repeat until small enough
1.1 Sort queries into sets Vj that have the same b bits at the end.
1.2 Pick one (a′, c ′) from Vj and add it to all the other samples in

Vj .
k

1 0 0 1 1 10 1 0 1 0 1
⊕ b

0 0 1 1 0 01 0 0 1 0 1

=

1 0 1 0 1 11 1 0 0 0 0
k′

2. Throw out all samples that have more than one bit set in a.
3. For 0 < j < b, sort into sets Wj that have aj = 1.
4. Decide sj by the majority of the c in Wj

The classic BKW algorithm [BKW00]

1. Repeat until small enough
1.1 Sort queries into sets Vj that have the same b bits at the end.
1.2 Pick one (a′, c ′) from Vj and add it to all the other samples in

Vj .
k

1 0 0 1 1 10 1 0 1 0 1
⊕ b

0 0 1 1 0 01 0 0 1 0 1

=

1 0 1 0 1 11 1 0 0 0 0
k′

2. Throw out all samples that have more than one bit set in a.

3. For 0 < j < b, sort into sets Wj that have aj = 1.
4. Decide sj by the majority of the c in Wj

The classic BKW algorithm [BKW00]

1. Repeat until small enough
1.1 Sort queries into sets Vj that have the same b bits at the end.
1.2 Pick one (a′, c ′) from Vj and add it to all the other samples in

Vj .
k

1 0 0 1 1 10 1 0 1 0 1
⊕ b

0 0 1 1 0 01 0 0 1 0 1

=

1 0 1 0 1 11 1 0 0 0 0
k′

2. Throw out all samples that have more than one bit set in a.
3. For 0 < j < b, sort into sets Wj that have aj = 1.

4. Decide sj by the majority of the c in Wj

The classic BKW algorithm [BKW00]

1. Repeat until small enough
1.1 Sort queries into sets Vj that have the same b bits at the end.
1.2 Pick one (a′, c ′) from Vj and add it to all the other samples in

Vj .
k

1 0 0 1 1 10 1 0 1 0 1
⊕ b

0 0 1 1 0 01 0 0 1 0 1

=

1 0 1 0 1 11 1 0 0 0 0
k′

2. Throw out all samples that have more than one bit set in a.
3. For 0 < j < b, sort into sets Wj that have aj = 1.
4. Decide sj by the majority of the c in Wj

The classic BKW algorithm [BKW00]

1. Repeat until small enough
1.1 Sort queries into sets Vj that have the same b bits at the end.
1.2 Pick one (a′, c ′) from Vj and add it to all the other samples in

Vj .
k

1 0 0 1 1 10 1 0 1 0 1
⊕ b

0 0 1 1 0 01 0 0 1 0 1

=

1 0 1 0 1 11 1 0 0 0 0
k′

2. Throw out all samples that have more than one bit set in a.
3. For 0 < j < b, sort into sets Wj that have aj = 1.
4. Decide sj by the majority of the c in Wj

The LF1 algorithm [LF06]

1. Repeat until small enough
1.1 Sort queries into sets Vj that have the same b bits at the end.
1.2 Pick one (a′, c ′) from Vj and add it to all the other samples in

Vj .

k

1 0 0 1 1 10 1 0 1 0 1
⊕ b

0 0 1 1 0 01 0 0 1 0 1

=

1 0 1 0 1 11 1 0 0 0 0
k′

2. Apply mathematical magic (Walsh-Hadamard transform) to
recover s1, . . . , sb.

The LF1 algorithm [LF06]

1. Repeat until small enough
1.1 Sort queries into sets Vj that have the same b bits at the end.
1.2 Pick one (a′, c ′) from Vj and add it to all the other samples in

Vj .

k

1 0 0 1 1 10 1 0 1 0 1
⊕ b

0 0 1 1 0 01 0 0 1 0 1

=

1 0 1 0 1 11 1 0 0 0 0
k′

2. Apply mathematical magic (Walsh-Hadamard transform) to
recover s1, . . . , sb.

The LF1 algorithm [LF06]

1. Repeat until small enough
1.1 Sort queries into sets Vj that have the same b bits at the end.
1.2 Pick one (a′, c ′) from Vj and add it to all the other samples in

Vj .

k

1 0 0 1 1 10 1 0 1 0 1
⊕ b

0 0 1 1 0 01 0 0 1 0 1

=

1 0 1 0 1 11 1 0 0 0 0
k′

2. Apply mathematical magic (Walsh-Hadamard transform) to
recover s1, . . . , sb.

Generic solving algorithm

Solve an LPNk,τ problem, given n samples.
1. Apply reduction algorithm and obtain LPNk ′,τ ′ problem with n′

samples.

2. Apply solving algorithm consuming n′ samples.
→ obtain information on s.

We may apply several reductions algorithms in sequence!

Generic solving algorithm

Solve an LPNk,τ problem, given n samples.
1. Apply reduction algorithm and obtain LPNk ′,τ ′ problem with n′

samples.
2. Apply solving algorithm consuming n′ samples.

→ obtain information on s.
We may apply several reductions algorithms in sequence!

Generic solving algorithm

Solve an LPNk,τ problem, given n samples.
1. Apply reduction algorithm and obtain LPNk ′,τ ′ problem with n′

samples.
2. Apply solving algorithm consuming n′ samples.
→ obtain information on s.

We may apply several reductions algorithms in sequence!

Generic solving algorithm

Solve an LPNk,τ problem, given n samples.
1. Apply reduction algorithm and obtain LPNk ′,τ ′ problem with n′

samples.
2. Apply solving algorithm consuming n′ samples.
→ obtain information on s.

We may apply several reductions algorithms in sequence!

Generic solving algorithm

Solve an LPNk,τ problem, given n samples.
1. Apply reduction algorithm and obtain LPNk ′,τ ′ problem with n′

samples.
2. Apply solving algorithm consuming n′ samples.
→ obtain information on s.

We may apply several reductions algorithms in sequence!

Complexity

Time Samples Memory20

211

222

233

244

255

266

277

288

LPN with k = 256 and = 1
5

BKW
LF1

The Gauss algorithm [EKM17]

Main idea: Try to find an error-free set of samples and then simply
apply Gaussian elimination.

1. Take k samples (a, c) as invertible matrix A and vector c.
2. Compute s′ = A−1 · c.
3. If Test(s′) confirms it’s error-free, we’re done, else goto 1.

The Test(s′) algorithm is as follows:

1. Take m samples (a, c) and write them as matrix Atest, ctest.
2. Compute e′ = Atest · s′ + ctest.

I We know Atest · s + e = ctest
I We also know e will have roughly m · τ bits flipped

3. If e′ has approximately m · τ bits flipped, probably s′ = s

The Gauss algorithm [EKM17]

Main idea: Try to find an error-free set of samples and then simply
apply Gaussian elimination.
1. Take k samples (a, c) as invertible matrix A and vector c.

2. Compute s′ = A−1 · c.
3. If Test(s′) confirms it’s error-free, we’re done, else goto 1.

The Test(s′) algorithm is as follows:

1. Take m samples (a, c) and write them as matrix Atest, ctest.
2. Compute e′ = Atest · s′ + ctest.

I We know Atest · s + e = ctest
I We also know e will have roughly m · τ bits flipped

3. If e′ has approximately m · τ bits flipped, probably s′ = s

The Gauss algorithm [EKM17]

Main idea: Try to find an error-free set of samples and then simply
apply Gaussian elimination.
1. Take k samples (a, c) as invertible matrix A and vector c.
2. Compute s′ = A−1 · c.

3. If Test(s′) confirms it’s error-free, we’re done, else goto 1.
The Test(s′) algorithm is as follows:

1. Take m samples (a, c) and write them as matrix Atest, ctest.
2. Compute e′ = Atest · s′ + ctest.

I We know Atest · s + e = ctest
I We also know e will have roughly m · τ bits flipped

3. If e′ has approximately m · τ bits flipped, probably s′ = s

The Gauss algorithm [EKM17]

Main idea: Try to find an error-free set of samples and then simply
apply Gaussian elimination.
1. Take k samples (a, c) as invertible matrix A and vector c.
2. Compute s′ = A−1 · c.
3. If Test(s′) confirms it’s error-free, we’re done, else goto 1.

The Test(s′) algorithm is as follows:

1. Take m samples (a, c) and write them as matrix Atest, ctest.
2. Compute e′ = Atest · s′ + ctest.

I We know Atest · s + e = ctest
I We also know e will have roughly m · τ bits flipped

3. If e′ has approximately m · τ bits flipped, probably s′ = s

The Gauss algorithm [EKM17]

Main idea: Try to find an error-free set of samples and then simply
apply Gaussian elimination.
1. Take k samples (a, c) as invertible matrix A and vector c.
2. Compute s′ = A−1 · c.
3. If Test(s′) confirms it’s error-free, we’re done, else goto 1.

The Test(s′) algorithm is as follows:

1. Take m samples (a, c) and write them as matrix Atest, ctest.
2. Compute e′ = Atest · s′ + ctest.

I We know Atest · s + e = ctest
I We also know e will have roughly m · τ bits flipped

3. If e′ has approximately m · τ bits flipped, probably s′ = s

The Gauss algorithm [EKM17]

Main idea: Try to find an error-free set of samples and then simply
apply Gaussian elimination.
1. Take k samples (a, c) as invertible matrix A and vector c.
2. Compute s′ = A−1 · c.
3. If Test(s′) confirms it’s error-free, we’re done, else goto 1.

The Test(s′) algorithm is as follows:
1. Take m samples (a, c) and write them as matrix Atest, ctest.

2. Compute e′ = Atest · s′ + ctest.

I We know Atest · s + e = ctest
I We also know e will have roughly m · τ bits flipped

3. If e′ has approximately m · τ bits flipped, probably s′ = s

The Gauss algorithm [EKM17]

Main idea: Try to find an error-free set of samples and then simply
apply Gaussian elimination.
1. Take k samples (a, c) as invertible matrix A and vector c.
2. Compute s′ = A−1 · c.
3. If Test(s′) confirms it’s error-free, we’re done, else goto 1.

The Test(s′) algorithm is as follows:
1. Take m samples (a, c) and write them as matrix Atest, ctest.
2. Compute e′ = Atest · s′ + ctest.

I We know Atest · s + e = ctest
I We also know e will have roughly m · τ bits flipped

3. If e′ has approximately m · τ bits flipped, probably s′ = s

The Gauss algorithm [EKM17]

Main idea: Try to find an error-free set of samples and then simply
apply Gaussian elimination.
1. Take k samples (a, c) as invertible matrix A and vector c.
2. Compute s′ = A−1 · c.
3. If Test(s′) confirms it’s error-free, we’re done, else goto 1.

The Test(s′) algorithm is as follows:
1. Take m samples (a, c) and write them as matrix Atest, ctest.
2. Compute e′ = Atest · s′ + ctest.

I We know Atest · s + e = ctest

I We also know e will have roughly m · τ bits flipped

3. If e′ has approximately m · τ bits flipped, probably s′ = s

The Gauss algorithm [EKM17]

Main idea: Try to find an error-free set of samples and then simply
apply Gaussian elimination.
1. Take k samples (a, c) as invertible matrix A and vector c.
2. Compute s′ = A−1 · c.
3. If Test(s′) confirms it’s error-free, we’re done, else goto 1.

The Test(s′) algorithm is as follows:
1. Take m samples (a, c) and write them as matrix Atest, ctest.
2. Compute e′ = Atest · s′ + ctest.

I We know Atest · s + e = ctest
I We also know e will have roughly m · τ bits flipped

3. If e′ has approximately m · τ bits flipped, probably s′ = s

The Gauss algorithm [EKM17]

Main idea: Try to find an error-free set of samples and then simply
apply Gaussian elimination.
1. Take k samples (a, c) as invertible matrix A and vector c.
2. Compute s′ = A−1 · c.
3. If Test(s′) confirms it’s error-free, we’re done, else goto 1.

The Test(s′) algorithm is as follows:
1. Take m samples (a, c) and write them as matrix Atest, ctest.
2. Compute e′ = Atest · s′ + ctest.

I We know Atest · s + e = ctest
I We also know e will have roughly m · τ bits flipped

3. If e′ has approximately m · τ bits flipped, probably s′ = s

Variant: Pooled Gauss

1. Take n = k2 log2 k samples as a sample pool.

2. Randomly take k samples (a, c) from the pool as invertible
matrix A and vector c.

3. Compute s′ = A−1 · c.
4. If Test(s′) confirms it’s error-free, we’re done, else goto 1.
 Needs much less samples.
This algorithm is an Information-Set Decoding algorithm: it finds an
error-free index set in the pool. Notably, it resembles the [Pra62]
algorithm.

Variant: Pooled Gauss

1. Take n = k2 log2 k samples as a sample pool.
2. Randomly take k samples (a, c) from the pool as invertible

matrix A and vector c.

3. Compute s′ = A−1 · c.
4. If Test(s′) confirms it’s error-free, we’re done, else goto 1.
 Needs much less samples.
This algorithm is an Information-Set Decoding algorithm: it finds an
error-free index set in the pool. Notably, it resembles the [Pra62]
algorithm.

Variant: Pooled Gauss

1. Take n = k2 log2 k samples as a sample pool.
2. Randomly take k samples (a, c) from the pool as invertible

matrix A and vector c.
3. Compute s′ = A−1 · c.

4. If Test(s′) confirms it’s error-free, we’re done, else goto 1.
 Needs much less samples.
This algorithm is an Information-Set Decoding algorithm: it finds an
error-free index set in the pool. Notably, it resembles the [Pra62]
algorithm.

Variant: Pooled Gauss

1. Take n = k2 log2 k samples as a sample pool.
2. Randomly take k samples (a, c) from the pool as invertible

matrix A and vector c.
3. Compute s′ = A−1 · c.
4. If Test(s′) confirms it’s error-free, we’re done, else goto 1.

 Needs much less samples.
This algorithm is an Information-Set Decoding algorithm: it finds an
error-free index set in the pool. Notably, it resembles the [Pra62]
algorithm.

Variant: Pooled Gauss

1. Take n = k2 log2 k samples as a sample pool.
2. Randomly take k samples (a, c) from the pool as invertible

matrix A and vector c.
3. Compute s′ = A−1 · c.
4. If Test(s′) confirms it’s error-free, we’re done, else goto 1.

 Needs much less samples.
This algorithm is an Information-Set Decoding algorithm: it finds an
error-free index set in the pool. Notably, it resembles the [Pra62]
algorithm.

Variant: Pooled Gauss

1. Take n = k2 log2 k samples as a sample pool.
2. Randomly take k samples (a, c) from the pool as invertible

matrix A and vector c.
3. Compute s′ = A−1 · c.
4. If Test(s′) confirms it’s error-free, we’re done, else goto 1.
 Needs much less samples.

This algorithm is an Information-Set Decoding algorithm: it finds an
error-free index set in the pool. Notably, it resembles the [Pra62]
algorithm.

Variant: Pooled Gauss

1. Take n = k2 log2 k samples as a sample pool.
2. Randomly take k samples (a, c) from the pool as invertible

matrix A and vector c.
3. Compute s′ = A−1 · c.
4. If Test(s′) confirms it’s error-free, we’re done, else goto 1.
 Needs much less samples.
This algorithm is an Information-Set Decoding algorithm: it finds an
error-free index set in the pool. Notably, it resembles the [Pra62]
algorithm.

Complexities

To solve LPNk,τ :

n Samples Time Memory

BKW 20 · ln(4k) · 2b · (1− 2τ)−2a kan kn

LF1 (8b + 2000) (1− 2τ)−2a +(a−1)2b kan + b2b kn + b2b

Gauss k · I +m
(
k3 + km

)
I k2 + km

Pooled
Gauss

k2 log2 k +m
(
k3 + km

)
I k2 log2 k + km

Gauss needs I = O
(

log2
2 k

(1−τ)k

)
iterations to find a solution.

Complexity

Time Samples Memory20

214

228

242

256

270

284

298

2112
LPN with k = 256 and = 1

5
BKW
LF1
Gauss
Pooled Gauss

Covering Codes

0
1
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
01

1
1

1

1 1
1 1
1 1
1 1 1

0 1 0 1 1 0 1

Covering-codes reduction

0
1
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
01

1
1

1

1 1
1 1
1 1
1 1 1

0 1 0 1 1 0 1
k

k′

This allows us to reduce a k-size LPN problem with noise τ to a
k ′-sized LPN problem with noise τ ′.
This new noise τ ′ is strongly dependent on the code used. We
measure the impact as bc. (0 ≤ bc ≤ 1, larger is better)

Covering-codes reduction

0
1
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
01

1
1

1

1 1
1 1
1 1
1 1 1

0 1 0 1 1 0 1
k

k′

This allows us to reduce a k-size LPN problem with noise τ to a
k ′-sized LPN problem with noise τ ′.
This new noise τ ′ is strongly dependent on the code used. We
measure the impact as bc. (0 ≤ bc ≤ 1, larger is better)

Finding codes for the reduction

I We need a code that allows us to reduce from k to k ′.

I We could use random codes, but they are hard to decode.
I (Quasi-)Perfect codes give the best bc, but only few are known.

0
1
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
01

1
1

1

1 1
1 1
1 1
1 1 1

0 1 0 1 1 0 1
k

k′

Finding codes for the reduction

I We need a code that allows us to reduce from k to k ′.
I We could use random codes, but they are hard to decode.

I (Quasi-)Perfect codes give the best bc, but only few are known.

0
1
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
01

1
1

1

1 1
1 1
1 1
1 1 1

0 1 0 1 1 0 1
k

k′

Finding codes for the reduction

I We need a code that allows us to reduce from k to k ′.
I We could use random codes, but they are hard to decode.
I (Quasi-)Perfect codes give the best bc, but only few are known.

0
1
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
01

1
1

1

1 1
1 1
1 1
1 1 1

0 1 0 1 1 0 1
k

k′

Coded Gauss

1. Apply covering-codes reduction to reduce problem size from k
to k ′.

2. Recover secret using Gauss

The complexity of this algorithm:

I We will need I = O
(

log2
2 k

(1−τ ′)k′

)
attempts before we find k ′

error-free samples.
I Gauss needs n = k ′ · I +m samples.
I In each Gauss iteration we do k3 + k ·m work
I We will need to decode all the n samples as well
→ Time complexity O(n + (k3 + k ·m) · I)

Coded Gauss

1. Apply covering-codes reduction to reduce problem size from k
to k ′.

2. Recover secret using Gauss
The complexity of this algorithm:

I We will need I = O
(

log2
2 k

(1−τ ′)k′

)
attempts before we find k ′

error-free samples.

I Gauss needs n = k ′ · I +m samples.
I In each Gauss iteration we do k3 + k ·m work
I We will need to decode all the n samples as well
→ Time complexity O(n + (k3 + k ·m) · I)

Coded Gauss

1. Apply covering-codes reduction to reduce problem size from k
to k ′.

2. Recover secret using Gauss
The complexity of this algorithm:

I We will need I = O
(

log2
2 k

(1−τ ′)k′

)
attempts before we find k ′

error-free samples.
I Gauss needs n = k ′ · I +m samples.

I In each Gauss iteration we do k3 + k ·m work
I We will need to decode all the n samples as well
→ Time complexity O(n + (k3 + k ·m) · I)

Coded Gauss

1. Apply covering-codes reduction to reduce problem size from k
to k ′.

2. Recover secret using Gauss
The complexity of this algorithm:

I We will need I = O
(

log2
2 k

(1−τ ′)k′

)
attempts before we find k ′

error-free samples.
I Gauss needs n = k ′ · I +m samples.
I In each Gauss iteration we do k3 + k ·m work

I We will need to decode all the n samples as well
→ Time complexity O(n + (k3 + k ·m) · I)

Coded Gauss

1. Apply covering-codes reduction to reduce problem size from k
to k ′.

2. Recover secret using Gauss
The complexity of this algorithm:

I We will need I = O
(

log2
2 k

(1−τ ′)k′

)
attempts before we find k ′

error-free samples.
I Gauss needs n = k ′ · I +m samples.
I In each Gauss iteration we do k3 + k ·m work
I We will need to decode all the n samples as well

→ Time complexity O(n + (k3 + k ·m) · I)

Coded Gauss

1. Apply covering-codes reduction to reduce problem size from k
to k ′.

2. Recover secret using Gauss
The complexity of this algorithm:

I We will need I = O
(

log2
2 k

(1−τ ′)k′

)
attempts before we find k ′

error-free samples.
I Gauss needs n = k ′ · I +m samples.
I In each Gauss iteration we do k3 + k ·m work
I We will need to decode all the n samples as well
→ Time complexity O(n + (k3 + k ·m) · I)

How ‘good’ should a code be?

Let’s assume we have arbitrary [k, k ′] codes.

64 128 192 256 320 384 448 512
k ′

0.2

0.4

0.6

0.8

1
bc

Coded Gauss
is faster

Plain Gauss is faster

(a) Lower bound for bc

0 16 32 48 64 80 96 112 128
k ′

10-18
10-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2
100

bc

Coded Gauss
is faster

Plain Gauss is faster

(b) More detailed look at 0 < k ′ ≤ 128.

Figure: Minimal bc before Coded Gauss is faster than applying Gauss to
the full problem. k = 512, τ = 1

8 .

How ‘good’ should a code be?
Let’s assume we have arbitrary [k, k ′] codes. We have the following
inequality

TGauss(k , τ) ≥ TCoded Gauss(k , k
′, τ, bc)

64 128 192 256 320 384 448 512
k ′

0.2

0.4

0.6

0.8

1
bc

Coded Gauss
is faster

Plain Gauss is faster

(a) Lower bound for bc

0 16 32 48 64 80 96 112 128
k ′

10-18
10-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2
100

bc

Coded Gauss
is faster

Plain Gauss is faster

(b) More detailed look at 0 < k ′ ≤ 128.

Figure: Minimal bc before Coded Gauss is faster than applying Gauss to
the full problem. k = 512, τ = 1

8 .

How ‘good’ should a code be?

Let’s assume we have arbitrary [k, k ′] codes.

64 128 192 256 320 384 448 512
k ′

0.2

0.4

0.6

0.8

1
bc

Coded Gauss
is faster

Plain Gauss is faster

(a) Lower bound for bc

0 16 32 48 64 80 96 112 128
k ′

10-18
10-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2
100

bc

Coded Gauss
is faster

Plain Gauss is faster

(b) More detailed look at 0 < k ′ ≤ 128.

Figure: Minimal bc before Coded Gauss is faster than applying Gauss to
the full problem. k = 512, τ = 1

8 .

The best-case scenario for bc

Assume we have arbitrary, (quasi-)perfect codes.

Figure: Minimal bc and the bc obtained at the Hamming bound for various
τ . k = 512, δ = δs = 1− 2τ .

The best-case scenario for bc

Assume we have arbitrary, (quasi-)perfect codes.

bc ≤ 2k
′−k

R∑

w=0

(
k

w

)(
δws − δR+1

s

)
+ δR+1

s .

Here, R is a property we can bound for quasi-perfect codes
(Hamming Bound [Ham50]) and δs = 1− 2τ .

Figure: Minimal bc and the bc obtained at the Hamming bound for various
τ . k = 512, δ = δs = 1− 2τ .

The best-case scenario for bc

Assume we have arbitrary, (quasi-)perfect codes.

0 64 128 192 256 320 384 448 512
k ′

2-31
2-28
2-25
2-22
2-19
2-16
2-13
2-10
2-7
2-4
2-1

bc

Needed bc (τ= 1√
512

)

Hamming Bound bc (τ= 1√
512

)

(a) τ = 1√
512

0 64 128 192 256 320 384 448 512
k ′

2-91
2-84
2-77
2-70
2-63
2-56
2-49
2-42
2-35
2-28
2-21
2-14
2-7
20
bc

Needed bc (τ= 1
8
)

bc at Hamming Bound (τ= 1
8
)

(b) τ = 1
8

Figure: Minimal bc and the bc obtained at the Hamming bound for various
τ . k = 512, δ = δs = 1− 2τ .

The best-case scenario for bc

Assume we have arbitrary, (quasi-)perfect codes.

0 64 128 192 256 320 384 448 512
k ′

2-196
2-180
2-164
2-148
2-132
2-116
2-100
2-84
2-68
2-52
2-36
2-20
2-4
bc

Needed bc (τ= 1
4
)

bc at Hamming Bound (τ= 1
4
)

(a) τ = 1
4

0 64 128 192 256 320 384 448 512
k ′2-511

2-474
2-437
2-400
2-363
2-326
2-289
2-252
2-215
2-178
2-141
2-104
2-67
2-30

bc

Needed bc (τ= 4999999
10000000

)
bc at Hamming Bound (τ= 4999999

10000000
)

(b) τ = 4 999 999
10 000 000

Figure: Minimal bc and the bc obtained at the Hamming bound for various
τ . k = 512, δ = δs = 1− 2τ .

Coded Gauss doesn’t work

In conclusion, the following:
1. Apply covering code to reduce to k ′-sized problem
2. Use Gauss to solve the problem

isn’t faster than only applying step 2.

Note
Our analysis was limited to the above algorithm. We have results
that show the following may work
1. Apply some reduction to reduce to a k ′-sized problem with

noise τ ′

2. Apply covering code to reduce to k ′′-sized problem with noise
τ ′′

3. Use Gauss to solve the problem

However, we would also need to include the complexity of step 1
when analysing this combination.

Coded Gauss doesn’t work

In conclusion, the following:
1. Apply covering code to reduce to k ′-sized problem
2. Use Gauss to solve the problem

isn’t faster than only applying step 2.

Note
Our analysis was limited to the above algorithm. We have results
that show the following may work
1. Apply some reduction to reduce to a k ′-sized problem with

noise τ ′

2. Apply covering code to reduce to k ′′-sized problem with noise
τ ′′

3. Use Gauss to solve the problem

However, we would also need to include the complexity of step 1
when analysing this combination.

Coded Gauss doesn’t work

In conclusion, the following:
1. Apply covering code to reduce to k ′-sized problem
2. Use Gauss to solve the problem

isn’t faster than only applying step 2.

Note
Our analysis was limited to the above algorithm. We have results
that show the following may work
1. Apply some reduction to reduce to a k ′-sized problem with

noise τ ′

2. Apply covering code to reduce to k ′′-sized problem with noise
τ ′′

3. Use Gauss to solve the problem

However, we would also need to include the complexity of step 1
when analysing this combination.

Outline

Intro

Learning Parity with Noise
Breaking LPN
The covering-codes reduction

Covering Codes

Combinations of reductions

What we are working on

Improving the performance of the covering-codes reduction

The covering-codes reduction as originally proposed:
1. Apply covering-codes reduction
2. Recover information on s using Walsh-Hadamard Transform.

Picking codes is hard. Much of the work around this attack has been
on finding the right codes to instantiate attacks.

Improving the performance of the covering-codes reduction

The covering-codes reduction as originally proposed:
1. Apply covering-codes reduction
2. Recover information on s using Walsh-Hadamard Transform.

Picking codes is hard. Much of the work around this attack has been
on finding the right codes to instantiate attacks.

Concatenated Codes

Current attacks use concatenations of small perfect codes to
construct larger [k, k ′] codes.

Example
We construct the following [12, 4] code from [3, 1] repetion codes
with generator

(
1 1 1

)
:



1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1




The bc of concatenated codes is the product of the bc of the smaller
codes.

Concatenated Codes

Current attacks use concatenations of small perfect codes to
construct larger [k, k ′] codes.

Example
We construct the following [12, 4] code from [3, 1] repetion codes
with generator

(
1 1 1

)
:



1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1




The bc of concatenated codes is the product of the bc of the smaller
codes.

Concatenated Codes (cont.)

Example
We construct the following [12, 4] code from [3, 1] repetion codes
with generator

(
1 1 1

)
:



1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1




Decoding Algorithm

1. Generate look up tables for the small codes
2. Split your vector along the small codes
3. Look up the codewords for the individual pieces in the lookup

tables
4. Concatenate

StGen codes

Samardjiska and Gliogoski proposed an improvement on these
concatenations of codes. We add random noise on top of the blocks.

G = Ik

B1k1 B′
2

B2k2

n2

. B′
v

Bvkv
0







n1

nv

(1)

Simona proposed using these codes with the covering-codes
reduction at a department lunch talk.

Decoding StGen Codes

G = Ik

B1k1 B′
2

B2k2

n2

. B′
v

Bvkv
0







n1

nv

(2)

Decoding algorithm sketch

1. Set maximum error weights and limits

2. Split vector into pieces
3. Produce all candidate codewords and error vectors for first

block B1

4. Multiply each of these by B ′2 to account for that random noise
5. Generate all the candidates for B2

6. Increase maximum weights if you have few candidates for the
next round.

Decoding StGen Codes

G = Ik

B1k1 B′
2

B2k2

n2

. B′
v

Bvkv
0







n1

nv

(2)

Decoding algorithm sketch

1. Set maximum error weights and limits
2. Split vector into pieces

3. Produce all candidate codewords and error vectors for first
block B1

4. Multiply each of these by B ′2 to account for that random noise
5. Generate all the candidates for B2

6. Increase maximum weights if you have few candidates for the
next round.

Decoding StGen Codes

G = Ik

B1k1 B′
2

B2k2

n2

. B′
v

Bvkv
0







n1

nv

(2)

Decoding algorithm sketch

1. Set maximum error weights and limits
2. Split vector into pieces
3. Produce all candidate codewords and error vectors for first

block B1

4. Multiply each of these by B ′2 to account for that random noise
5. Generate all the candidates for B2

6. Increase maximum weights if you have few candidates for the
next round.

Decoding StGen Codes

G = Ik

B1k1 B′
2

B2k2

n2

. B′
v

Bvkv
0







n1

nv

(2)

Decoding algorithm sketch

1. Set maximum error weights and limits
2. Split vector into pieces
3. Produce all candidate codewords and error vectors for first

block B1

4. Multiply each of these by B ′2 to account for that random noise

5. Generate all the candidates for B2

6. Increase maximum weights if you have few candidates for the
next round.

Decoding StGen Codes

G = Ik

B1k1 B′
2

B2k2

n2

. B′
v

Bvkv
0







n1

nv

(2)

Decoding algorithm sketch

1. Set maximum error weights and limits
2. Split vector into pieces
3. Produce all candidate codewords and error vectors for first

block B1

4. Multiply each of these by B ′2 to account for that random noise
5. Generate all the candidates for B2

6. Increase maximum weights if you have few candidates for the
next round.

Decoding StGen Codes

G = Ik

B1k1 B′
2

B2k2

n2

. B′
v

Bvkv
0







n1

nv

(2)

Decoding algorithm sketch

1. Set maximum error weights and limits
2. Split vector into pieces
3. Produce all candidate codewords and error vectors for first

block B1

4. Multiply each of these by B ′2 to account for that random noise
5. Generate all the candidates for B2

6. Increase maximum weights if you have few candidates for the
next round.

Complications of StGen codes

I Decoding is not trivial

I Decoding algorithm based on list decoding [SG17]
I Highly tweakable

I Because of the random elements we can no longer directly
compute bc.

I For random codes computing bc is a hugely expensive operation.
I We instead estimate it over a number of random vectors

Complications of StGen codes

I Decoding is not trivial
I Decoding algorithm based on list decoding [SG17]

I Highly tweakable
I Because of the random elements we can no longer directly

compute bc.

I For random codes computing bc is a hugely expensive operation.
I We instead estimate it over a number of random vectors

Complications of StGen codes

I Decoding is not trivial
I Decoding algorithm based on list decoding [SG17]
I Highly tweakable

I Because of the random elements we can no longer directly
compute bc.

I For random codes computing bc is a hugely expensive operation.
I We instead estimate it over a number of random vectors

Complications of StGen codes

I Decoding is not trivial
I Decoding algorithm based on list decoding [SG17]
I Highly tweakable

I Because of the random elements we can no longer directly
compute bc.

I For random codes computing bc is a hugely expensive operation.
I We instead estimate it over a number of random vectors

Complications of StGen codes

I Decoding is not trivial
I Decoding algorithm based on list decoding [SG17]
I Highly tweakable

I Because of the random elements we can no longer directly
compute bc.
I For random codes computing bc is a hugely expensive operation.

I We instead estimate it over a number of random vectors

Complications of StGen codes

I Decoding is not trivial
I Decoding algorithm based on list decoding [SG17]
I Highly tweakable

I Because of the random elements we can no longer directly
compute bc.
I For random codes computing bc is a hugely expensive operation.
I We instead estimate it over a number of random vectors

Outline

Intro

Learning Parity with Noise
Breaking LPN
The covering-codes reduction

Covering Codes

Combinations of reductions

What we are working on

Finding reduction chains

Bogos and Vaudenay propose a search algorithm for finding
combinations of reductions:

Figure: Finding chains of reductions [Bog17].

Improving the performance of an attack
Bogos and Vaudenay propose a combination of reductions to solve
LPN512, 18

in O(278.85) time using 263.3 samples.

Step k log2 n 1 − 2τ δs Algorithm

1 512 63.3 0.75 0 sparse-secret
2 512 63.3 0.75 0.75 xor-reduce (b = 59)
3 453 66.6 0.5625 0.75 xor-reduce (b = 65)
4 388 67.2 0.3164 0.75 xor-reduce (b = 66)
5 322 67.4 0.1001 0.75 xor-reduce (b = 66)
6 256 67.8 0.0100 0.75 xor-reduce (b = 67)
7 189 67.6 0.0001 0.75 covering-codes
8 64 67.6 8.8 · 10−10 FWHT

Table: The full solving chain of Bogos and Vaudenay [BV16; BV] on
LPN512, 1

8
. In step 7 they apply a [189, 64] covering code with

bc = 8.78 · 10−6.

Improving the performance of an attack
Bogos and Vaudenay propose a combination of reductions to solve
LPN512, 18

in O(278.85) time using 263.3 samples.

Step k log2 n 1 − 2τ δs Algorithm

1 512 63.3 0.75 0 sparse-secret
2 512 63.3 0.75 0.75 xor-reduce (b = 59)
3 453 66.6 0.5625 0.75 xor-reduce (b = 65)
4 388 67.2 0.3164 0.75 xor-reduce (b = 66)
5 322 67.4 0.1001 0.75 xor-reduce (b = 66)
6 256 67.8 0.0100 0.75 xor-reduce (b = 67)
7 189 67.6 0.0001 0.75 covering-codes
8 64 67.6 8.8 · 10−10 FWHT

Table: The full solving chain of Bogos and Vaudenay [BV16; BV] on
LPN512, 1

8
. In step 7 they apply a [189, 64] covering code with

bc = 8.78 · 10−6.

The code used by Bogos and Vaudenay

The last reduction applied uses a number of random codes.

Table: bc for the small random codes used in the solving algorithm for
LPN512, 1

8
[BV16; BV].

Code Count bc
(
τ = 1

8

)

[18, 6] 1 0.323782920837402
[19, 6] 5 0.291754990816116
[19, 7] 4 0.336303114891052

The code used by Bogos and Vaudenay

The last reduction applied uses a number of random codes.

Table: bc for the small random codes used in the solving algorithm for
LPN512, 1

8
[BV16; BV].

Code Count bc
(
τ = 1

8

)

[18, 6] 1 0.323782920837402
[19, 6] 5 0.291754990816116
[19, 7] 4 0.336303114891052

The code used by Bogos and Vaudenay

G =
Ik

[19, 7]

[18, 6]

. . .
[19, 6]

0







The bc of the concatenated code is

bc = 0.3231 · 0.2925 · 0.3364 = 8.78 · 10−6.

The code used by Bogos and Vaudenay

G =
Ik

[19, 7] B′
2

[18, 6].
B′

v

[19, 6]
0







The bc of this StGen code is approximated to

bc ≈ 3.8 · 10−5.

Theoretical improvement

Using bc = 3.8 · 10−5 we improve the performance of the algorithm.

Table: Improved attack on LPN512, 1
8

Original With StGen code

Time O
(
278.85) O

(
278.1)

Samples 263.3 263.2

But: we assumed that decoding takes O(1) time!

Table: Decoding times

Base codes Concatenated StGen

B&V 0.2 ms

Theoretical improvement

Using bc = 3.8 · 10−5 we improve the performance of the algorithm.

Table: Improved attack on LPN512, 1
8

Original With StGen code

Time O
(
278.85) O

(
278.1)

Samples 263.3 263.2

But: we assumed that decoding takes O(1) time!

Table: Decoding times

Base codes Concatenated StGen

B&V 0.2 ms

Theoretical improvement

Using bc = 3.8 · 10−5 we improve the performance of the algorithm.

Table: Improved attack on LPN512, 1
8

Original With StGen code

Time O
(
278.85) O

(
278.1)

Samples 263.3 263.2

But: we assumed that decoding takes O(1) time!

Table: Decoding times

Base codes Concatenated StGen

B&V 0.2 ms

Theoretical improvement

Using bc = 3.8 · 10−5 we improve the performance of the algorithm.

Table: Improved attack on LPN512, 1
8

Original With StGen code

Time O
(
278.85) O

(
278.1)

Samples 263.3 263.2

But: we assumed that decoding takes O(1) time!

Table: Decoding times

Base codes Concatenated StGen

B&V 0.2 ms ±500 000 ms

Theoretical improvement

Using bc = 3.8 · 10−5 we improve the performance of the algorithm.

Table: Improved attack on LPN512, 1
8

Original With StGen code

Time O
(
278.85) O

(
278.1)

Samples 263.3 263.2

But: we assumed that decoding takes O(1) time!

Table: Decoding times

Base codes Concatenated StGen

B&V 0.2 ms ±500 000 ms
Small perfect 0.009 ms 20–100 ms

Outline

Intro

Learning Parity with Noise
Breaking LPN
The covering-codes reduction

Covering Codes

Combinations of reductions

What we are working on

Finding reduction chains

Bogos and Vaudenay propose a search algorithm for finding
combinations of reductions:

Figure: Finding chains of reductions [Bog17].

Finding new reduction chains

Bogos and Vaudenay propose a search algorithm for finding
combinations of reductions:

Figure: Finding chains of reductions with Gauss [Bog17].

Memory consumption of m

0 16 32 48 64 80 96 112 128
k ′

222
226
230
234
238
242
246
250
254
258
262

222
226
230
234
238
242
246
250
254
258
262

m

bc=10−2

bc=10−3

bc=10−4

bc=10−5

bc=10−6

bc=10−7

1 MiB
1 GiB
1 TiB
1 PiB
1 EiB

Figure: m for various small bc (τ = 1
8)

Software

We developed software that allows to implement LPN solving
algorithms.

// Create LPN oracle with k=32 and tau=1/32
let mut oracle = LpnOracle::new(32, 1.0 / 32.0);
oracle.get_samples(1000);
// apply the LF2 `xor_reduce' reduction
// using b = 8 three times
xor_reduction(&mut oracle, 8);
xor_reduction(&mut oracle, 8);
xor_reduction(&mut oracle, 8);
// solve using two techniques
let fwht_solution = fwht_solve(oracle.clone());
let gauss_solution = pooled_gauss_solve(oracle);

Available via https://thomwiggers.nl/research/msc-thesis/.

https://thomwiggers.nl/research/msc-thesis/

Wrapping up
Conclusions
I Solving LPN not only costs a

lot of time, but also a lot of
memory.

I Combining the
covering-codes reduction
with Gauss does not work.

I At least, in the
combinations we presented

I We can improve the
theoretical performance of
solving algorithms using
StGen codes

I But StGen codes decode
so much slower that it’s
not faster in practice

Work in progress

I Find combinations of
reductions that do work with
Gauss

I Adapt Bogos and Vaudenay’s
reduction chain finding
algorithm to consider
memory consumption

I Add StGen codes to the
reduction finding algorithm
to find better-optimised
solving algorithms.

Thank you for your
attention

Wrapping up
Conclusions
I Solving LPN not only costs a

lot of time, but also a lot of
memory.

I Combining the
covering-codes reduction
with Gauss does not work.

I At least, in the
combinations we presented

I We can improve the
theoretical performance of
solving algorithms using
StGen codes

I But StGen codes decode
so much slower that it’s
not faster in practice

Work in progress

I Find combinations of
reductions that do work with
Gauss

I Adapt Bogos and Vaudenay’s
reduction chain finding
algorithm to consider
memory consumption

I Add StGen codes to the
reduction finding algorithm
to find better-optimised
solving algorithms.

Thank you for your
attention

Wrapping up
Conclusions
I Solving LPN not only costs a

lot of time, but also a lot of
memory.

I Combining the
covering-codes reduction
with Gauss does not work.
I At least, in the

combinations we presented

I We can improve the
theoretical performance of
solving algorithms using
StGen codes

I But StGen codes decode
so much slower that it’s
not faster in practice

Work in progress

I Find combinations of
reductions that do work with
Gauss

I Adapt Bogos and Vaudenay’s
reduction chain finding
algorithm to consider
memory consumption

I Add StGen codes to the
reduction finding algorithm
to find better-optimised
solving algorithms.

Thank you for your
attention

Wrapping up
Conclusions
I Solving LPN not only costs a

lot of time, but also a lot of
memory.

I Combining the
covering-codes reduction
with Gauss does not work.
I At least, in the

combinations we presented
I We can improve the

theoretical performance of
solving algorithms using
StGen codes

I But StGen codes decode
so much slower that it’s
not faster in practice

Work in progress

I Find combinations of
reductions that do work with
Gauss

I Adapt Bogos and Vaudenay’s
reduction chain finding
algorithm to consider
memory consumption

I Add StGen codes to the
reduction finding algorithm
to find better-optimised
solving algorithms.

Thank you for your
attention

Wrapping up
Conclusions
I Solving LPN not only costs a

lot of time, but also a lot of
memory.

I Combining the
covering-codes reduction
with Gauss does not work.
I At least, in the

combinations we presented
I We can improve the

theoretical performance of
solving algorithms using
StGen codes
I But StGen codes decode

so much slower that it’s
not faster in practice

Work in progress

I Find combinations of
reductions that do work with
Gauss

I Adapt Bogos and Vaudenay’s
reduction chain finding
algorithm to consider
memory consumption

I Add StGen codes to the
reduction finding algorithm
to find better-optimised
solving algorithms.

Thank you for your
attention

Wrapping up
Conclusions
I Solving LPN not only costs a

lot of time, but also a lot of
memory.

I Combining the
covering-codes reduction
with Gauss does not work.
I At least, in the

combinations we presented
I We can improve the

theoretical performance of
solving algorithms using
StGen codes
I But StGen codes decode

so much slower that it’s
not faster in practice

Work in progress

I Find combinations of
reductions that do work with
Gauss

I Adapt Bogos and Vaudenay’s
reduction chain finding
algorithm to consider
memory consumption

I Add StGen codes to the
reduction finding algorithm
to find better-optimised
solving algorithms.

Thank you for your
attention

Wrapping up
Conclusions
I Solving LPN not only costs a

lot of time, but also a lot of
memory.

I Combining the
covering-codes reduction
with Gauss does not work.
I At least, in the

combinations we presented
I We can improve the

theoretical performance of
solving algorithms using
StGen codes
I But StGen codes decode

so much slower that it’s
not faster in practice

Work in progress

I Find combinations of
reductions that do work with
Gauss

I Adapt Bogos and Vaudenay’s
reduction chain finding
algorithm to consider
memory consumption

I Add StGen codes to the
reduction finding algorithm
to find better-optimised
solving algorithms.

Thank you for your
attention

Wrapping up
Conclusions
I Solving LPN not only costs a

lot of time, but also a lot of
memory.

I Combining the
covering-codes reduction
with Gauss does not work.
I At least, in the

combinations we presented
I We can improve the

theoretical performance of
solving algorithms using
StGen codes
I But StGen codes decode

so much slower that it’s
not faster in practice

Work in progress

I Find combinations of
reductions that do work with
Gauss

I Adapt Bogos and Vaudenay’s
reduction chain finding
algorithm to consider
memory consumption

I Add StGen codes to the
reduction finding algorithm
to find better-optimised
solving algorithms.

Thank you for your
attention

Wrapping up
Conclusions
I Solving LPN not only costs a

lot of time, but also a lot of
memory.

I Combining the
covering-codes reduction
with Gauss does not work.
I At least, in the

combinations we presented
I We can improve the

theoretical performance of
solving algorithms using
StGen codes
I But StGen codes decode

so much slower that it’s
not faster in practice

Work in progress

I Find combinations of
reductions that do work with
Gauss

I Adapt Bogos and Vaudenay’s
reduction chain finding
algorithm to consider
memory consumption

I Add StGen codes to the
reduction finding algorithm
to find better-optimised
solving algorithms.

Thank you for your
attention

Wrapping up
Conclusions
I Solving LPN not only costs a

lot of time, but also a lot of
memory.

I Combining the
covering-codes reduction
with Gauss does not work.
I At least, in the

combinations we presented
I We can improve the

theoretical performance of
solving algorithms using
StGen codes
I But StGen codes decode

so much slower that it’s
not faster in practice

Work in progress

I Find combinations of
reductions that do work with
Gauss

I Adapt Bogos and Vaudenay’s
reduction chain finding
algorithm to consider
memory consumption

I Add StGen codes to the
reduction finding algorithm
to find better-optimised
solving algorithms.

Thank you for your
attention

Outline

Backup slides
BKW algorithm
LF1 algorithm
LF2 algorithm
Gauss vs Coded Gauss
Memory consumption
StGen code decoding

Bibliography

The BKW algorithm

Input: A set V of n samples (a, c) from OLPN
s,t , a, b s.t. k ≥ ab

1 for i = 1 to a− 1 do
// Reduction (partition-reduce):

2 Partition V = V1 ∪ · · · ∪ V2b s.t. they all have the same bit
values on the last ib bits

3 foreach Vj do
4 Choose a (a′, c ′) ∈ Vj

5 Replace all other (a, c) ∈ Vj by (a + a′, c + c ′)
6 Discard (a′, c ′)
// Solving phase (majority):

7 Discard all samples (a, c) from V where HW (a) 6= 1
8 Divide V into b partitions, such that vectors a ∈ Vj have aj = 1
9 for i = 1 to b do

10 si = majority(c), for all (a, c) ∈ Vi

11 return s1, . . . , sb

LF1 algorithm

Algorithm 1: The LF1 algorithm as presented in [BTV15]

Input: A set V of n samples (a, c) from OLPN
s,t ,

a, b s.t. k = ab
Output: (s1, . . . , sa) from s

1 Run a− 1 iterations of partition-reduce as in the BKW
algorithm

// Solving Phase (FWHT):
2 f (x) =

∑
(a,c)∈V 1V1,...,b=x(−1)c

3 f̂ (x) =
∑

x (−1)〈a,x〉f (x)
4 return (s1, . . . , sb) = arg max

a∈Zb
2

(f̂ (a))

LF2 algorithm

Algorithm 2: The LF2 algorithm [LF06]

Input: A set V of n samples (a, c) from OLPN
s,t ,

a, b s.t. k = ab
Output: (s1, . . . , sb) from s

1 for i = 1 to a− 1 do
2 Partition V = V1 ∪ · · · ∪ V2b s.t. they all have the same bit

values on the last ib bits
3 foreach Vj do
4 V ′j = ∅
5 for (a, c), (a′, c ′) ∈ Vj , (a, c) 6= (a′, c ′) do
6 V ′j = V ′j ∪ {(a + a′, c + c ′)}
7 V = V ′1 ∪ · · · ∪ V ′2b
// Solving Phase (FWHT) [..]

8 return (s1, . . . , sb) = argmax(f̂ (a))

Gauss

1 Function Gauss(OLPN
s,τ , τ)

2 repeat
3 repeat
4 (A, c)←

(
OLPN

s,τ
)k

5 until A is full rank
6 s′ = A−1c
7 until Test(s′, τ , 1

2k ,
(1−τ

2

)k)
8 return s′

1 Function Test(s′, τ , α, β)

2 m =

(√
3
2 ln(1

α)+
√

ln 1
β

1
2−τ

)2

;

3 c = τm +√
3
(1

2 − τ
)
ln
(1
α

)
m;

4 (A, c)←
(
OLPN

s,τ
)m;

5 if HW (As′ + c) ≤ c then
6 return True;
7 else
8 return False;

Pooled Gauss

1 Function PooledGauss(OLPN
s,τ , τ)

2 P ←
(
OLPN

s,τ
)k2 log2 k

3 repeat
4 repeat
5 (A, c) U←− P
6 until A is full rank
7 s′ = A−1c
8 until Test(s′, τ , 1

2k ,
(1−τ

2

)k)
9 return s′

When is Coded Gauss faster

(
k3 + km

)
log2

2 k(1
2 + 1

2δ
)k ≥

(
k ′3 + k ′m

)
log2

2 k
′

(1
2 + 1

2δbc
)k ′ +m + n.

Memory consumption of m

0 16 32 48 64 80 96 112 128
k ′

222
226
230
234
238
242
246
250
254
258
262

222
226
230
234
238
242
246
250
254
258
262

m

bc=10−2

bc=10−3

bc=10−4

bc=10−5

bc=10−6

bc=10−7

1 MiB
1 GiB
1 TiB
1 PiB
1 EiB

Figure: m for various small bc (τ = 1
8)

StGen decoding

Input: w1, wb, winc, G , Lmax, c ∈ Fn
2.

Output: A close codeword of c
Let Ki = Σi

j=1kj , Ni = Σi
j=1nj and let Gi be the ‘small code’ (Iki |Bi).

1 L0 = {(x0, e0)}, x0, e0 are zero-dimensional vectors.
2 for i = 1 to v do
3 foreach (xi−1, ei−1) in Li−1 do
4 b =

(
cKi−1 , . . . , cKi

)
||
(
xi−1B

′
i +

(
ck+Ni−1 , . . . , ck+Ni

))
5 max-wt = min(wi − HW (ei−1),wb)

6 foreach e′ ∈
{
v ∈ Fni+ki

2 | HW (v) ≤ max-wt
}

do
7 Find x′ s.t. x′Gi + b = e′

8 enew =

(
(ei−1)1, . . . , (ei−1)Ki−1

, e′1, . . . , e′ki ,

(ei−1)Ki−1
, . . . , (ei−1)Ki−1+Ni−1

, e′ki , . . . , e
′
ki+ni

)
9 Add (xi−1||x′, enew) to Li

10 if |Li | < Lmax then wi+1 = wi + winc else wi+1 = wi

11 return x from (x, e) ∈ Lv where HW (e) is minimal
Algorithm 3: List-decoding StGen codes [SG15]

Outline

Backup slides
BKW algorithm
LF1 algorithm
LF2 algorithm
Gauss vs Coded Gauss
Memory consumption
StGen code decoding

Bibliography

Bibliography I

[BKW00] Avrim Blum, Adam Kalai and Hal Wasserman.
‘Noise-tolerant learning, the parity problem, and the
statistical query model’. In: 32nd ACM STOC. ACM
Press, May 2000, pp. 435–440.

[Bog17] Sonia Bogos. ‘LPN in Cryptography: an Algorithmic
Study’. PhD thesis. École Polytechnique Fédérale De
Lausanne, 2017. URL: https://infoscience.epfl.
ch/record/228977/files/EPFL_TH7800.pdf.

[BTV15] Sonia Bogos, Florian Tramer and Serge Vaudenay. On
Solving LPN using BKW and Variants. Cryptology ePrint
Archive, Report 2015/049.
http://eprint.iacr.org/2015/049. 2015.

[BV] Sonia Bogos and Serge Vaudenay. Optimization of LPN
Solving Algorithms: Additional material. URL:
https://infoscience.epfl.ch/record/223773/
files/additional_material.pdf?version=1.

https://infoscience.epfl.ch/record/228977/files/EPFL_TH7800.pdf
https://infoscience.epfl.ch/record/228977/files/EPFL_TH7800.pdf
http://eprint.iacr.org/2015/049
https://infoscience.epfl.ch/record/223773/files/additional_material.pdf?version=1
https://infoscience.epfl.ch/record/223773/files/additional_material.pdf?version=1

Bibliography II

[BV16] Sonia Bogos and Serge Vaudenay. ‘Optimization of LPN
Solving Algorithms’. In: ASIACRYPT 2016, Part I.
Ed. by Jung Hee Cheon and Tsuyoshi Takagi. Vol. 10031.
LNCS. Springer, Heidelberg, Dec. 2016, pp. 703–728.
DOI: 10.1007/978-3-662-53887-6_26.

[EKM17] Andre Esser, Robert Kübler and Alexander May. ‘LPN
Decoded’. In: CRYPTO 2017, Part II. Ed. by
Jonathan Katz and Hovav Shacham. Vol. 10402. LNCS.
Springer, Heidelberg, Aug. 2017, pp. 486–514.

[Ham50] Richard W. Hamming. ‘Error detecting and error
correcting codes’. In: The Bell System Technical Journal
29.2 (Apr. 1950), pp. 147–160. DOI:
10.1002/j.1538-7305.1950.tb00463.x.

https://doi.org/10.1007/978-3-662-53887-6_26
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x

Bibliography III

[LF06] Éric Levieil and Pierre-Alain Fouque. ‘An Improved LPN
Algorithm’. In: SCN 06. Ed. by Roberto De Prisco and
Moti Yung. Vol. 4116. LNCS. Springer, Heidelberg, Sept.
2006, pp. 348–359.

[Pra62] Eugene Prange. ‘The use of information sets in decoding
cyclic codes’. In: IRE Transactions on Information
Theory 8.5 (Sept. 1962), pp. 5–9. DOI:
10.1109/TIT.1962.1057777.

[Reg05] Oded Regev. ‘On lattices, learning with errors, random
linear codes, and cryptography’. In: 37th ACM STOC.
Ed. by Harold N. Gabow and Ronald Fagin. ACM Press,
May 2005, pp. 84–93.

https://doi.org/10.1109/TIT.1962.1057777

Bibliography IV

[SG15] Simona Samardjiska and Danilo Gligoroski. ‘Approaching
maximum embedding efficiency on small covers using
Staircase-Generator codes’. In: 2015 IEEE International
Symposium on Information Theory (ISIT). June 2015,
pp. 2752–2756. DOI: 10.1109/ISIT.2015.7282957.

[SG17] Simona Samardjiska and Danilo Gligoroski. ‘A Robust
List-Decoding Algorithm for Maximizing Embedding
Efficiency for Arbitrary Payloads’. 2017.

https://doi.org/10.1109/ISIT.2015.7282957

	Intro
	Learning Parity with Noise
	Breaking LPN
	The covering-codes reduction

	Covering Codes
	Combinations of reductions
	What we are working on
	Appendix
	Backup slides
	BKW algorithm
	LF1 algorithm
	LF2 algorithm
	Gauss vs Coded Gauss
	Memory consumption
	StGen code decoding

	Bibliography
	References

