

TLS → Post-Quantum TLS: Inspecting the TLS landscape for PQC adoption on Android Dimitri Mankowski,¹ Thom Wiggers,² Veelasha Moonsamy¹

¹ Ruhr University Bochum, Germany
 ² PQShield, Netherlands

Gefördert durch **DFG** Deutsche Forschungsgemeinschaf

OUTLINE

Part I:

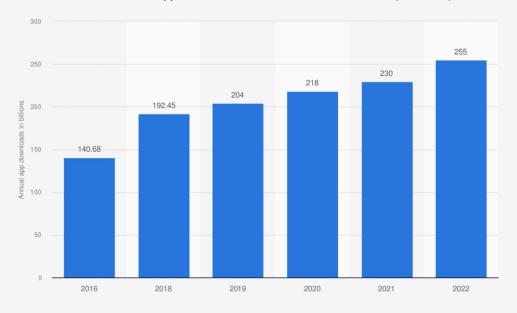
- Motivation
- Experiment
- Measurement Results

Part II:

- Impact on PQC
- Recommendations for:
 - Protocol designers
 - Developers
 - Android ecosystem

Part I Motivation, Experiment, Measurement Results

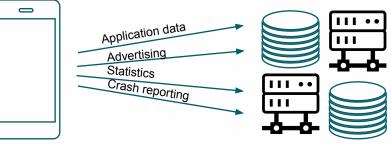
Gefördert durch
DFG Deutsche
Forschungsgemeinschaf



statista 🖍

APP USAGE

Number of mobile app downloads worldwide from 2016 to 2022 (in billions)

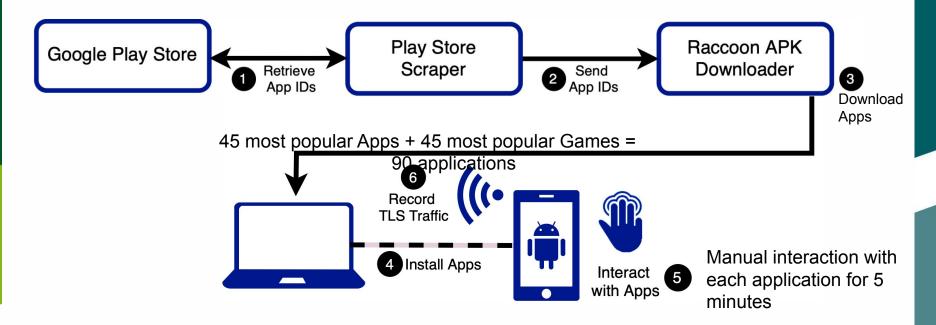

Source Data.ai © Statista 2023

Additional Information: Worldwide; Data.ai; 2016 to 2022; IOS App Store, Google Play and third-party Android stores and updates are excluded

4

MOTIVATION

Traffic encrypted with TLS


ECC and RSA \rightarrow Efficient Could be broken with quantum algorithms Use post-quantum cryptography (PQC) Larger bandwidth requirements

How efficient would the adoption of PQC be in mobile apps?

 $\label{eq:Focus on Android} \longrightarrow 78\% \mbox{ market share worldwide} \\ \mbox{https://www.counterpointresearch.com/global-smartphone-os-market-share/}$

EXPERIMENT SETUP

7

HOW TO REDUCE TLS OVERHEAD?

1. Reduce number of handshakes

Simplest way to reduce RTT

2. Use Resumptions

- For repeatedly accessed servers
- Re-establish a connection without performing a full TLS handshake

3. Longer session durations

- e.g. HTTP Keep-Alive, HTTP/2 or HTTP/3 connection multiplexing
- Could reduce the number of TLS handshakes

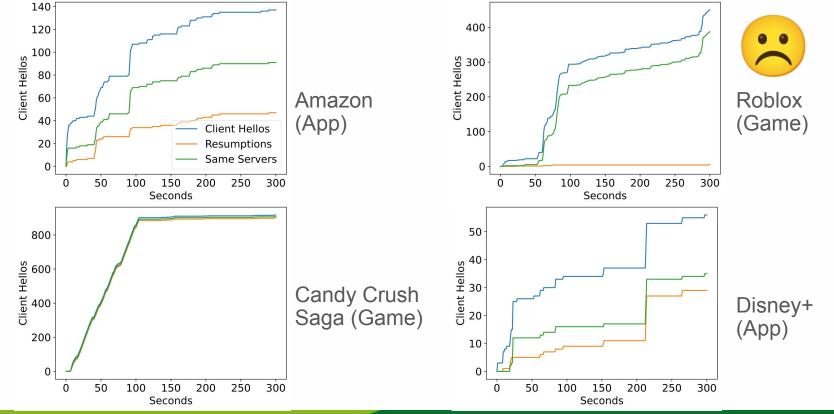
4. TLS 1.3

- Reduces the number of round trips in handshake
- Zero-round trip (0-RTT) mode for resumptions

5. QUIC

 Uses TLS 1.3 and UDP, combining the connection setup and encryption handshake into a single round-trip

RESULTS - APPS VS GAMES


		Apps	Games	All
Handshakes Mean		86	203	144
Media		57	135	94
Resumptions Mean		18	54	36
Median		11	20	14
Servers	Mean	32	58	45
	Median	25	60	37
Traffic in MB	Mean	9.5	17.7	13.6
	Median	3.2	9	6.2
Session Time in secs	Mean	4.5	3.7	4.1
	Median	1.1	2.3	1.8
TLS 1.3 usage in %	1.3 usage in % Mean		58	66
	Median		67	69
QUIC handshakes	Mean	10	11	11
	Median	10	8	9

- Games are more active than Apps in almost all aspects
- Many Apps generate revenue through shopping/banking/...)
- **Games** generate revenue through advertising and data collection

9

RESULTS - CLIENT HELLOS

SUMMARY OF MEASUREMENTS

- Slow adoption of new TLS standards among Android applications
- TLS 1.3 only used in 66% of connections
- Only **31%** of connections to the same host use **resumptions**
- Use of the QUIC protocol remains low
- **Conclusion**: Focus of developers is largely not on network optimization

Part II The impact of post-quantum cryptography

POST-QUANTUM CRYPTOGRAPHY

POST-QUANTUM TLS

- Replace elliptic-curve Diffie–Hellman by post-quantum key exchange (KEM)
- Replace RSA/ECDSA by post-quantum signature schemes

NIST PQC standardization competition "winners":

- KEM: Kyber (MLWE-KEM)
- Signatures: **Dilithium** (MLWE-Sign) ("primary" selected algorithm)

Algorithm	public key size	ciphertext/signature
Kyber-512 (KEM)	800 bytes	768 bytes
Dilithium-2 (Signature)	1312 bytes	2420 bytes

INCREASES IN SIZE

Ephemeral key exchange	TLS handshake data 1x public key + 1x ciphertext	Authentication signatures	TLS handshake data 2x public key + 3x signature
ECDH (X25519)	64 bytes	RSA-2048	1312 bytes
Kyber-512	1568 bytes	Dilithium2	9984 bytes

EXTRAPOLATING APP TRAFFIC

Арр	# Full HS	Key exchange	Data	Auth.	Data	Total crypto overhead
Klarna	51	X25519 Kyber-512	3.3 80.0	RSA-2048 Dilithium2	66.9 504.1	70.2 584.1
Lighter	257	X25519	16.4	RSA-2048	337.2	353.6
Simulation		Kyber-512	403.0	Dilithium2	2540.2	2943.2
Haircut prank,	320	X25519	20.5	RSA-2048	419.8	440.3
air horn & fart		Kyber-512	501.8	Dilithium2	3162.9	3664.6

REDUCING TLS IMPACT

Alternative proposals for more efficient post-quantum TLS:

- **KEMTLS**: use (smaller) post-quantum KEM instead of signatures for handshake authentication
- **KEMTLS-PDK**: supply TLS client with server KEM public key (e.g. by embedding in statistics/ads SDK) and use that to avoid server certificates entirely.

[KEMTLS]: Peter Schwabe, Douglas Stebila, <u>Thom Wiggers</u> (2020). Post-Quantum TLS without handshake signatures. ACM CCS 2020.

[KEMTLS-PDK]: Peter Schwabe, Douglas Stebila, <u>Thom Wiggers</u> (2021). More efficient post-quantum KEMTLS with pre-distributed public keys. ESORICS 2021.

ALTERNATIVE TLS HANDSHAKES

Handshake	Algorithms	Size of KEX	public ke Auth.	y crypto (bytes) Sum
TLS	Kyber-512 & Dilithium2	1568	9884	11 452
KEMTLS	Kyber-512 & Dilithium2	1568	7720	9288
KEMTLS-PDK	Kyber-512	1568	768	2336
KEMTLS-PDK	Kyber-512 & McEliece348864	1568	96	1664

CONCLUSIONS AND RECOMMENDATIONS

- Android apps set up a lot of TLS connections
- Techniques that reduce overhead of TLS are hardly used
- Transitioning to post-quantum security will greatly increase impact of overhead
- Pursuing alternatives to the signed-TLS handshake, especially KEMTLS-PDK, may be worthwhile

Recommendations

- For protocol designers: advanced features work, but developer visibility is an issue
- For developers: Adopting QUIC / TLS resumption / HTTP/2 / HTTP/3 today will greatly ease transition to post-quantum security tomorrow
- For the Android ecosystem:
 - Improve documentation and default library settings to encourage using the above
 - Give developers tools to inspect their apps' TLS usage (as browsers do!)

Paper available at:

https://ia.cr/2023/734

Dataset and scraper available at: <u>https://zenodo.org/record/7950522</u>

Thanks for your attention