
Hacking in C
Exploring Stack and Heap
Thom Wiggers

1

Last week

• Arrays

• Pointers

– Pointers to pointers
– Pointers too (see previous point)

• int* a_ptr = &a;
• Dereferencing *a
• Strings
• The horrible ways strings ruin your day
• Some bit of slide-karaoke about memory that wasn’t prepared

2

Last week

• Arrays
• Pointers

– Pointers to pointers
– Pointers too (see previous point)

• int* a_ptr = &a;
• Dereferencing *a
• Strings
• The horrible ways strings ruin your day
• Some bit of slide-karaoke about memory that wasn’t prepared

2

Last week

• Arrays
• Pointers

– Pointers to pointers

– Pointers too (see previous point)
• int* a_ptr = &a;
• Dereferencing *a
• Strings
• The horrible ways strings ruin your day
• Some bit of slide-karaoke about memory that wasn’t prepared

2

Last week

• Arrays
• Pointers

– Pointers to pointers
– Pointers too (see previous point)

• int* a_ptr = &a;
• Dereferencing *a
• Strings
• The horrible ways strings ruin your day
• Some bit of slide-karaoke about memory that wasn’t prepared

2

Last week

• Arrays
• Pointers

– Pointers to pointers
– Pointers too (see previous point)

• int* a_ptr = &a;

• Dereferencing *a
• Strings
• The horrible ways strings ruin your day
• Some bit of slide-karaoke about memory that wasn’t prepared

2

Last week

• Arrays
• Pointers

– Pointers to pointers
– Pointers too (see previous point)

• int* a_ptr = &a;
• Dereferencing *a

• Strings
• The horrible ways strings ruin your day
• Some bit of slide-karaoke about memory that wasn’t prepared

2

Last week

• Arrays
• Pointers

– Pointers to pointers
– Pointers too (see previous point)

• int* a_ptr = &a;
• Dereferencing *a
• Strings

• The horrible ways strings ruin your day
• Some bit of slide-karaoke about memory that wasn’t prepared

2

Last week

• Arrays
• Pointers

– Pointers to pointers
– Pointers too (see previous point)

• int* a_ptr = &a;
• Dereferencing *a
• Strings
• The horrible ways strings ruin your day

• Some bit of slide-karaoke about memory that wasn’t prepared

2

Last week

• Arrays
• Pointers

– Pointers to pointers
– Pointers too (see previous point)

• int* a_ptr = &a;
• Dereferencing *a
• Strings
• The horrible ways strings ruin your day
• Some bit of slide-karaoke about memory that wasn’t prepared

2

This week

The stack
Local variables
The stack

The heap

Special memory segments

Wrapping up memory

Reading the stack

Extra content
Memory quizzes
Finding memory bugs

3

Table of Contents

The stack
Local variables
The stack

The heap

Special memory segments

Wrapping up memory

Reading the stack

Extra content
Memory quizzes
Finding memory bugs

4

Local variables

Imagine the following program
#include "headers.h"

int main(int argc, char* argv[]){
int a = 3;
int b = 4;
int c = some_function();
return 0;

}

int some_function() {
char arr[100] = {0};
return 3;

}
How could we manage variables efficiently?

5

Properties of local variables

Local variables are:
• local to the function

– they can’t be accessed by other functions
• local to the function call

– If you call the function multiple times, each has its own copy of
its state

– This holds especially when you’re calling it recursively

• Only exist during the function call

6

Properties of local variables

Local variables are:
• local to the function

– they can’t be accessed by other functions

• local to the function call

– If you call the function multiple times, each has its own copy of
its state

– This holds especially when you’re calling it recursively

• Only exist during the function call

6

Properties of local variables

Local variables are:
• local to the function

– they can’t be accessed by other functions
• local to the function call

– If you call the function multiple times, each has its own copy of
its state

– This holds especially when you’re calling it recursively
• Only exist during the function call

6

Properties of local variables

Local variables are:
• local to the function

– they can’t be accessed by other functions
• local to the function call

– If you call the function multiple times, each has its own copy of
its state

– This holds especially when you’re calling it recursively
• Only exist during the function call

6

Properties of local variables

Local variables are:
• local to the function

– they can’t be accessed by other functions
• local to the function call

– If you call the function multiple times, each has its own copy of
its state

– This holds especially when you’re calling it recursively

• Only exist during the function call

6

Properties of local variables

Local variables are:
• local to the function

– they can’t be accessed by other functions
• local to the function call

– If you call the function multiple times, each has its own copy of
its state

– This holds especially when you’re calling it recursively
• Only exist during the function call

6

Option: pre-allocating all variables beforehand

Let’s turn every local variable into a global variable
• Having a single copy per declared local variable breaks the isolation

properties

• To allow every function call its own local variables you’d need to
fully trace the entire call graph and create copies

– Not possible if your program does stuff differently based on the
input

– You’d possibly need lots and lots of space

• Clearly not an option

7

Option: pre-allocating all variables beforehand

Let’s turn every local variable into a global variable
• Having a single copy per declared local variable breaks the isolation

properties
• To allow every function call its own local variables you’d need to

fully trace the entire call graph and create copies

– Not possible if your program does stuff differently based on the
input

– You’d possibly need lots and lots of space
• Clearly not an option

7

Option: pre-allocating all variables beforehand

Let’s turn every local variable into a global variable
• Having a single copy per declared local variable breaks the isolation

properties
• To allow every function call its own local variables you’d need to

fully trace the entire call graph and create copies
– Not possible if your program does stuff differently based on the

input

– You’d possibly need lots and lots of space
• Clearly not an option

7

Option: pre-allocating all variables beforehand

Let’s turn every local variable into a global variable
• Having a single copy per declared local variable breaks the isolation

properties
• To allow every function call its own local variables you’d need to

fully trace the entire call graph and create copies
– Not possible if your program does stuff differently based on the

input
– You’d possibly need lots and lots of space

• Clearly not an option

7

Option: pre-allocating all variables beforehand

Let’s turn every local variable into a global variable
• Having a single copy per declared local variable breaks the isolation

properties
• To allow every function call its own local variables you’d need to

fully trace the entire call graph and create copies
– Not possible if your program does stuff differently based on the

input
– You’d possibly need lots and lots of space

• Clearly not an option

7

Active management of local variables

Assuming we don’t know better, let’s ask the memory manager for space
each time we create a variable
• Requires setup code to be executed every function call for every

variable

– Would need to check: where have I got space? Is the memory
fragmented?

• Needs to make sure you don’t have collisions between function calls
• Execute expensive clean-up code per variable when the function

returns
There’s such a manager for heap variables, but those are usually
somewhat long-lived! We can do better for the local variables.

8

Active management of local variables

Assuming we don’t know better, let’s ask the memory manager for space
each time we create a variable
• Requires setup code to be executed every function call for every

variable
– Would need to check: where have I got space? Is the memory

fragmented?

• Needs to make sure you don’t have collisions between function calls
• Execute expensive clean-up code per variable when the function

returns
There’s such a manager for heap variables, but those are usually
somewhat long-lived! We can do better for the local variables.

8

Active management of local variables

Assuming we don’t know better, let’s ask the memory manager for space
each time we create a variable
• Requires setup code to be executed every function call for every

variable
– Would need to check: where have I got space? Is the memory

fragmented?
• Needs to make sure you don’t have collisions between function calls

• Execute expensive clean-up code per variable when the function
returns

There’s such a manager for heap variables, but those are usually
somewhat long-lived! We can do better for the local variables.

8

Active management of local variables

Assuming we don’t know better, let’s ask the memory manager for space
each time we create a variable
• Requires setup code to be executed every function call for every

variable
– Would need to check: where have I got space? Is the memory

fragmented?
• Needs to make sure you don’t have collisions between function calls
• Execute expensive clean-up code per variable when the function

returns

There’s such a manager for heap variables, but those are usually
somewhat long-lived! We can do better for the local variables.

8

Active management of local variables

Assuming we don’t know better, let’s ask the memory manager for space
each time we create a variable
• Requires setup code to be executed every function call for every

variable
– Would need to check: where have I got space? Is the memory

fragmented?
• Needs to make sure you don’t have collisions between function calls
• Execute expensive clean-up code per variable when the function

returns

There’s such a manager for heap variables, but those are usually
somewhat long-lived! We can do better for the local variables.

8

Active management of local variables

Assuming we don’t know better, let’s ask the memory manager for space
each time we create a variable
• Requires setup code to be executed every function call for every

variable
– Would need to check: where have I got space? Is the memory

fragmented?
• Needs to make sure you don’t have collisions between function calls
• Execute expensive clean-up code per variable when the function

returns
There’s such a manager for heap variables, but those are usually
somewhat long-lived! We can do better for the local variables.

8

Function calls

Realise that function calls are like a ladder

• You can go up a step on the ladder (call a function)

– And go another step up, when that function calls another
function

▶ And another step up when that function calls another
function

▶ Then we step down when we return

– We step down when we return

• Another step down when we return
• Going sideways is not possible (without multithreading)
• At the bottom of the ladder is int main()

9

Function calls

Realise that function calls are like a ladder
• You can go up a step on the ladder (call a function)

– And go another step up, when that function calls another
function

▶ And another step up when that function calls another
function

▶ Then we step down when we return

– We step down when we return
• Another step down when we return
• Going sideways is not possible (without multithreading)
• At the bottom of the ladder is int main()

9

Function calls

Realise that function calls are like a ladder
• You can go up a step on the ladder (call a function)

– And go another step up, when that function calls another
function

▶ And another step up when that function calls another
function

▶ Then we step down when we return
– We step down when we return

• Another step down when we return
• Going sideways is not possible (without multithreading)
• At the bottom of the ladder is int main()

9

Function calls

Realise that function calls are like a ladder
• You can go up a step on the ladder (call a function)

– And go another step up, when that function calls another
function
▶ And another step up when that function calls another

function

▶ Then we step down when we return
– We step down when we return

• Another step down when we return
• Going sideways is not possible (without multithreading)
• At the bottom of the ladder is int main()

9

Function calls

Realise that function calls are like a ladder
• You can go up a step on the ladder (call a function)

– And go another step up, when that function calls another
function
▶ And another step up when that function calls another

function
▶ Then we step down when we return

– We step down when we return
• Another step down when we return
• Going sideways is not possible (without multithreading)
• At the bottom of the ladder is int main()

9

Function calls

Realise that function calls are like a ladder
• You can go up a step on the ladder (call a function)

– And go another step up, when that function calls another
function
▶ And another step up when that function calls another

function
▶ Then we step down when we return

– We step down when we return

• Another step down when we return
• Going sideways is not possible (without multithreading)
• At the bottom of the ladder is int main()

9

Function calls

Realise that function calls are like a ladder
• You can go up a step on the ladder (call a function)

– And go another step up, when that function calls another
function
▶ And another step up when that function calls another

function
▶ Then we step down when we return

– We step down when we return
• Another step down when we return

• Going sideways is not possible (without multithreading)
• At the bottom of the ladder is int main()

9

Function calls

Realise that function calls are like a ladder
• You can go up a step on the ladder (call a function)

– And go another step up, when that function calls another
function
▶ And another step up when that function calls another

function
▶ Then we step down when we return

– We step down when we return
• Another step down when we return
• Going sideways is not possible (without multithreading)

• At the bottom of the ladder is int main()

9

Function calls

Realise that function calls are like a ladder
• You can go up a step on the ladder (call a function)

– And go another step up, when that function calls another
function
▶ And another step up when that function calls another

function
▶ Then we step down when we return

– We step down when we return
• Another step down when we return
• Going sideways is not possible (without multithreading)
• At the bottom of the ladder is int main()

9

Stacking variables

• We use this behaviour to manage our local variables on the stack

• Push your local variables on top of the stack
• When you call a function, also push those variables on top of the

stack
• When that function returns, just pop off those variables from the

stack and they’re gone
• Only thing to keep track of: where is the top of the stack

10

Stacking variables

• We use this behaviour to manage our local variables on the stack
• Push your local variables on top of the stack

• When you call a function, also push those variables on top of the
stack

• When that function returns, just pop off those variables from the
stack and they’re gone

• Only thing to keep track of: where is the top of the stack

10

Stacking variables

• We use this behaviour to manage our local variables on the stack
• Push your local variables on top of the stack
• When you call a function, also push those variables on top of the

stack

• When that function returns, just pop off those variables from the
stack and they’re gone

• Only thing to keep track of: where is the top of the stack

10

Stacking variables

• We use this behaviour to manage our local variables on the stack
• Push your local variables on top of the stack
• When you call a function, also push those variables on top of the

stack
• When that function returns, just pop off those variables from the

stack and they’re gone

• Only thing to keep track of: where is the top of the stack

10

Stacking variables

• We use this behaviour to manage our local variables on the stack
• Push your local variables on top of the stack
• When you call a function, also push those variables on top of the

stack
• When that function returns, just pop off those variables from the

stack and they’re gone
• Only thing to keep track of: where is the top of the stack

10

Stack frames and the stack pointer

Example:
int func(int a, int b)
{

...
return 10001;

}

int main(void)
{

...
int x = func(42, 23)
...

}

high addresses
Command-line arguments

stack pointer −→

stack frame of
main()

Heap
.bss
.data
code
(.text)

low addresses

11

Stack frames and the stack pointer

Example:
int func(int a, int b)
{

...
return 10001;

}

int main(void)
{

...
int x = func(42, 23)
...

}

high addresses
Command-line arguments

stack frame of
main()

stack pointer −→

stack frame of
func()

Heap
.bss
.data
code
(.text)

low addresses

11

Stack frames and the stack pointer

Example:
int func(int a, int b)
{

...
return 10001;

}

int main(void)
{

...
int x = func(42, 23)
...

}

high addresses
Command-line arguments

stack pointer −→

stack frame of
main()

Heap
.bss
.data
code
(.text)

low addresses

11

A zoom into the stack frame

• Stack before the function call

• Caller (main) first puts arguments
for func on the stack

• Caller pushes the return address
onto the stack

• ???
• Callee pushes local variables onto

the stack

high addresses
Command-line arguments

stack frame of
main()

arguments of func()

return address
???

local variables

stack pointer −→

Heap

...

low addresses

12

A zoom into the stack frame

• Stack before the function call
• Caller (main) first puts arguments

for func on the stack

• Caller pushes the return address
onto the stack

• ???
• Callee pushes local variables onto

the stack

high addresses
Command-line arguments

stack frame of
main()

arguments of func()

return address
???

local variables

stack pointer −→

Heap

...

low addresses

12

A zoom into the stack frame

• Stack before the function call
• Caller (main) first puts arguments

for func on the stack
• Caller pushes the return address

onto the stack

• ???
• Callee pushes local variables onto

the stack

high addresses
Command-line arguments

stack frame of
main()

arguments of func()

return address

???

local variables

stack pointer −→

Heap

...

low addresses

12

A zoom into the stack frame

• Stack before the function call
• Caller (main) first puts arguments

for func on the stack
• Caller pushes the return address

onto the stack
• ???

• Callee pushes local variables onto
the stack

high addresses
Command-line arguments

stack frame of
main()

arguments of func()

return address
???

local variables

stack pointer −→

Heap

...

low addresses

12

A zoom into the stack frame

• Stack before the function call
• Caller (main) first puts arguments

for func on the stack
• Caller pushes the return address

onto the stack
• ???
• Callee pushes local variables onto

the stack

high addresses
Command-line arguments

stack frame of
main()

arguments of func()

return address
???

local variables
stack pointer −→

Heap

...

low addresses

12

The frame pointer

• So what’s with the ???. . . ?

• Traditionally also have an frame
pointer

• Pointing to the end (high
address) of the active stack frame

• On x86 in ebp register (AMD64:
rbp)

• Function call also saves previous
frame pointer on the stack

• On AMD64 commonly omitted:

– Faster function calls
– One additional register

available

high addresses
Command-line arguments

stack frame of
main()

arguments of func()

return address
saved frame pointer

local variables
frame pointer −→

stack pointer −→

Heap

...

low addresses

13

The frame pointer

• So what’s with the ???. . . ?
• Traditionally also have an frame

pointer

• Pointing to the end (high
address) of the active stack frame

• On x86 in ebp register (AMD64:
rbp)

• Function call also saves previous
frame pointer on the stack

• On AMD64 commonly omitted:

– Faster function calls
– One additional register

available

high addresses
Command-line arguments

stack frame of
main()

arguments of func()

return address
saved frame pointer

local variables
frame pointer −→

stack pointer −→

Heap

...

low addresses

13

The frame pointer

• So what’s with the ???. . . ?
• Traditionally also have an frame

pointer
• Pointing to the end (high

address) of the active stack frame

• On x86 in ebp register (AMD64:
rbp)

• Function call also saves previous
frame pointer on the stack

• On AMD64 commonly omitted:

– Faster function calls
– One additional register

available

high addresses
Command-line arguments

stack frame of
main()

arguments of func()

return address
saved frame pointer

local variables
frame pointer −→

stack pointer −→

Heap

...

low addresses

13

The frame pointer

• So what’s with the ???. . . ?
• Traditionally also have an frame

pointer
• Pointing to the end (high

address) of the active stack frame
• On x86 in ebp register (AMD64:

rbp)

• Function call also saves previous
frame pointer on the stack

• On AMD64 commonly omitted:

– Faster function calls
– One additional register

available

high addresses
Command-line arguments

stack frame of
main()

arguments of func()

return address
saved frame pointer

local variables
frame pointer −→

stack pointer −→

Heap

...

low addresses

13

The frame pointer

• So what’s with the ???. . . ?
• Traditionally also have an frame

pointer
• Pointing to the end (high

address) of the active stack frame
• On x86 in ebp register (AMD64:

rbp)
• Function call also saves previous

frame pointer on the stack

• On AMD64 commonly omitted:

– Faster function calls
– One additional register

available

high addresses
Command-line arguments

stack frame of
main()

arguments of func()

return address
saved frame pointer

local variables
frame pointer −→

stack pointer −→

Heap

...

low addresses

13

The frame pointer

• So what’s with the ???. . . ?
• Traditionally also have an frame

pointer
• Pointing to the end (high

address) of the active stack frame
• On x86 in ebp register (AMD64:

rbp)
• Function call also saves previous

frame pointer on the stack
• On AMD64 commonly omitted:

– Faster function calls
– One additional register

available

high addresses
Command-line arguments

stack frame of
main()

arguments of func()

return address
saved frame pointer

local variables
frame pointer −→

stack pointer −→

Heap

...

low addresses

13

The frame pointer

• So what’s with the ???. . . ?
• Traditionally also have an frame

pointer
• Pointing to the end (high

address) of the active stack frame
• On x86 in ebp register (AMD64:

rbp)
• Function call also saves previous

frame pointer on the stack
• On AMD64 commonly omitted:

– Faster function calls

– One additional register
available

high addresses
Command-line arguments

stack frame of
main()

arguments of func()

return address
saved frame pointer

local variables
frame pointer −→

stack pointer −→

Heap

...

low addresses

13

The frame pointer

• So what’s with the ???. . . ?
• Traditionally also have an frame

pointer
• Pointing to the end (high

address) of the active stack frame
• On x86 in ebp register (AMD64:

rbp)
• Function call also saves previous

frame pointer on the stack
• On AMD64 commonly omitted:

– Faster function calls
– One additional register

available

high addresses
Command-line arguments

stack frame of
main()

arguments of func()

return address
saved frame pointer

local variables
frame pointer −→

stack pointer −→

Heap

...

low addresses

13

Other stuff on the stack

So the other helpful uses of the stack:
• Passing function arguments†

– Push them on the stack before jumping to the function
• Keep track of the return address

– Push it on the stack
– Return from function: pop local vars, pop arguments, get return

address, jump back

• Store the return value‡

– Returning from function: pop vars, args, return address, push result,
jump back

• Managing the frame pointer
† The first 4 (Windows) / 6 (rest) arguments are passed via registers on

AMD64 for speed reasons
‡ Returned via register on x64, ARM, ARMv8 and probably other platforms

14

Other stuff on the stack

So the other helpful uses of the stack:
• Passing function arguments†

– Push them on the stack before jumping to the function

• Keep track of the return address

– Push it on the stack
– Return from function: pop local vars, pop arguments, get return

address, jump back

• Store the return value‡

– Returning from function: pop vars, args, return address, push result,
jump back

• Managing the frame pointer
† The first 4 (Windows) / 6 (rest) arguments are passed via registers on

AMD64 for speed reasons
‡ Returned via register on x64, ARM, ARMv8 and probably other platforms

14

Other stuff on the stack

So the other helpful uses of the stack:
• Passing function arguments†

– Push them on the stack before jumping to the function
• Keep track of the return address

– Push it on the stack
– Return from function: pop local vars, pop arguments, get return

address, jump back
• Store the return value‡

– Returning from function: pop vars, args, return address, push result,
jump back

• Managing the frame pointer
† The first 4 (Windows) / 6 (rest) arguments are passed via registers on

AMD64 for speed reasons
‡ Returned via register on x64, ARM, ARMv8 and probably other platforms

14

Other stuff on the stack

So the other helpful uses of the stack:
• Passing function arguments†

– Push them on the stack before jumping to the function
• Keep track of the return address

– Push it on the stack

– Return from function: pop local vars, pop arguments, get return
address, jump back

• Store the return value‡

– Returning from function: pop vars, args, return address, push result,
jump back

• Managing the frame pointer
† The first 4 (Windows) / 6 (rest) arguments are passed via registers on

AMD64 for speed reasons
‡ Returned via register on x64, ARM, ARMv8 and probably other platforms

14

Other stuff on the stack

So the other helpful uses of the stack:
• Passing function arguments†

– Push them on the stack before jumping to the function
• Keep track of the return address

– Push it on the stack
– Return from function: pop local vars, pop arguments, get return

address, jump back

• Store the return value‡

– Returning from function: pop vars, args, return address, push result,
jump back

• Managing the frame pointer
† The first 4 (Windows) / 6 (rest) arguments are passed via registers on

AMD64 for speed reasons
‡ Returned via register on x64, ARM, ARMv8 and probably other platforms

14

Other stuff on the stack

So the other helpful uses of the stack:
• Passing function arguments†

– Push them on the stack before jumping to the function
• Keep track of the return address

– Push it on the stack
– Return from function: pop local vars, pop arguments, get return

address, jump back
• Store the return value‡

– Returning from function: pop vars, args, return address, push result,
jump back

• Managing the frame pointer
† The first 4 (Windows) / 6 (rest) arguments are passed via registers on

AMD64 for speed reasons
‡ Returned via register on x64, ARM, ARMv8 and probably other platforms

14

Other stuff on the stack

So the other helpful uses of the stack:
• Passing function arguments†

– Push them on the stack before jumping to the function
• Keep track of the return address

– Push it on the stack
– Return from function: pop local vars, pop arguments, get return

address, jump back
• Store the return value‡

– Returning from function: pop vars, args, return address, push result,
jump back

• Managing the frame pointer
† The first 4 (Windows) / 6 (rest) arguments are passed via registers on

AMD64 for speed reasons
‡ Returned via register on x64, ARM, ARMv8 and probably other platforms

14

Other stuff on the stack

So the other helpful uses of the stack:
• Passing function arguments†

– Push them on the stack before jumping to the function
• Keep track of the return address

– Push it on the stack
– Return from function: pop local vars, pop arguments, get return

address, jump back
• Store the return value‡

– Returning from function: pop vars, args, return address, push result,
jump back

• Managing the frame pointer

† The first 4 (Windows) / 6 (rest) arguments are passed via registers on
AMD64 for speed reasons

‡ Returned via register on x64, ARM, ARMv8 and probably other platforms

14

Other stuff on the stack

So the other helpful uses of the stack:
• Passing function arguments†

– Push them on the stack before jumping to the function
• Keep track of the return address

– Push it on the stack
– Return from function: pop local vars, pop arguments, get return

address, jump back
• Store the return value‡

– Returning from function: pop vars, args, return address, push result,
jump back

• Managing the frame pointer
† The first 4 (Windows) / 6 (rest) arguments are passed via registers on

AMD64 for speed reasons

‡ Returned via register on x64, ARM, ARMv8 and probably other platforms

14

Other stuff on the stack

So the other helpful uses of the stack:
• Passing function arguments†

– Push them on the stack before jumping to the function
• Keep track of the return address

– Push it on the stack
– Return from function: pop local vars, pop arguments, get return

address, jump back
• Store the return value‡

– Returning from function: pop vars, args, return address, push result,
jump back

• Managing the frame pointer
† The first 4 (Windows) / 6 (rest) arguments are passed via registers on

AMD64 for speed reasons
‡ Returned via register on x64, ARM, ARMv8 and probably other platforms

14

Stack overflow

• You’re probably aware of https://stackoverflow.com
• Named for running out of stack space: a stack overflow
• Limits set by:

– Hardware
– Operating system

• Get (set) limit on Linux via
– ulimit -s (ulimit -s kb) on the shell (sets for the current

shell)
– getrlimit() (setrlimit()) in C

15

https://stackoverflow.com

Common stack bugs

• Stack overflow caused by

– (infinite) recursion
– Creating too-large local variables

• Stack variables are not auto-initialised

– If you read them, you’ll find what previous function call put
there

• The stack mixes program and control data
• Writing beyond buffers may overwrite frame pointers or return

addresses

– Segmentation fault, if you overwrote with garbage
– A hacked system, if you overwrote with the address of your

attack code. . .

16

Common stack bugs

• Stack overflow caused by
– (infinite) recursion

– Creating too-large local variables
• Stack variables are not auto-initialised

– If you read them, you’ll find what previous function call put
there

• The stack mixes program and control data
• Writing beyond buffers may overwrite frame pointers or return

addresses

– Segmentation fault, if you overwrote with garbage
– A hacked system, if you overwrote with the address of your

attack code. . .

16

Common stack bugs

• Stack overflow caused by
– (infinite) recursion
– Creating too-large local variables

• Stack variables are not auto-initialised

– If you read them, you’ll find what previous function call put
there

• The stack mixes program and control data
• Writing beyond buffers may overwrite frame pointers or return

addresses

– Segmentation fault, if you overwrote with garbage
– A hacked system, if you overwrote with the address of your

attack code. . .

16

Common stack bugs

• Stack overflow caused by
– (infinite) recursion
– Creating too-large local variables

• Stack variables are not auto-initialised

– If you read them, you’ll find what previous function call put
there

• The stack mixes program and control data
• Writing beyond buffers may overwrite frame pointers or return

addresses

– Segmentation fault, if you overwrote with garbage
– A hacked system, if you overwrote with the address of your

attack code. . .

16

Common stack bugs

• Stack overflow caused by
– (infinite) recursion
– Creating too-large local variables

• Stack variables are not auto-initialised
– If you read them, you’ll find what previous function call put

there

• The stack mixes program and control data
• Writing beyond buffers may overwrite frame pointers or return

addresses

– Segmentation fault, if you overwrote with garbage
– A hacked system, if you overwrote with the address of your

attack code. . .

16

Common stack bugs

• Stack overflow caused by
– (infinite) recursion
– Creating too-large local variables

• Stack variables are not auto-initialised
– If you read them, you’ll find what previous function call put

there
• The stack mixes program and control data

• Writing beyond buffers may overwrite frame pointers or return
addresses

– Segmentation fault, if you overwrote with garbage
– A hacked system, if you overwrote with the address of your

attack code. . .

16

Common stack bugs

• Stack overflow caused by
– (infinite) recursion
– Creating too-large local variables

• Stack variables are not auto-initialised
– If you read them, you’ll find what previous function call put

there
• The stack mixes program and control data
• Writing beyond buffers may overwrite frame pointers or return

addresses

– Segmentation fault, if you overwrote with garbage
– A hacked system, if you overwrote with the address of your

attack code. . .

16

Common stack bugs

• Stack overflow caused by
– (infinite) recursion
– Creating too-large local variables

• Stack variables are not auto-initialised
– If you read them, you’ll find what previous function call put

there
• The stack mixes program and control data
• Writing beyond buffers may overwrite frame pointers or return

addresses
– Segmentation fault, if you overwrote with garbage

– A hacked system, if you overwrote with the address of your
attack code. . .

16

Common stack bugs

• Stack overflow caused by
– (infinite) recursion
– Creating too-large local variables

• Stack variables are not auto-initialised
– If you read them, you’ll find what previous function call put

there
• The stack mixes program and control data
• Writing beyond buffers may overwrite frame pointers or return

addresses
– Segmentation fault, if you overwrote with garbage
– A hacked system, if you overwrote with the address of your

attack code. . .

16

. . . how bad is “wrong” exactly?

“On Thursday October 24, 2013, an Oklahoma court ruled against
Toyota in a case of unintended acceleration that lead to the death of one
the occupants. Central to the trial was the Engine Control Module’s
(ECM) firmware.”

17

. . . how bad is “wrong” exactly?

“On Thursday October 24, 2013, an Oklahoma court ruled against
Toyota in a case of unintended acceleration that lead to the death of one
the occupants. Central to the trial was the Engine Control Module’s
(ECM) firmware.”

17

What went wrong?

• Critical variables were not mirrored (stored twice)
• Most importantly, result value TargetThrottleAngle wasn’t

mirrored
• Also critical data structes of the real-time OS weren’t mirrored

• Stack overflow
– Toyota claimed stack upper bound of 41% of total memory
– Stack was actually using 94% of total memory
– Analysis ignored stack used by some 350 assembly functions

• Code used recursion (forbidden by MISRA-C guidelines)
• MISRA-C: guidelines by the Motor Industry Software Reliability

Association

“A litany of other faults were found in the code, including buffer
overflow, unsafe casting, and race conditions between tasks.”

18

What went wrong?

• Critical variables were not mirrored (stored twice)
• Most importantly, result value TargetThrottleAngle wasn’t

mirrored
• Also critical data structes of the real-time OS weren’t mirrored
• Stack overflow

– Toyota claimed stack upper bound of 41% of total memory
– Stack was actually using 94% of total memory
– Analysis ignored stack used by some 350 assembly functions

• Code used recursion (forbidden by MISRA-C guidelines)
• MISRA-C: guidelines by the Motor Industry Software Reliability

Association

“A litany of other faults were found in the code, including buffer
overflow, unsafe casting, and race conditions between tasks.”

18

What went wrong?

• Critical variables were not mirrored (stored twice)
• Most importantly, result value TargetThrottleAngle wasn’t

mirrored
• Also critical data structes of the real-time OS weren’t mirrored
• Stack overflow

– Toyota claimed stack upper bound of 41% of total memory
– Stack was actually using 94% of total memory
– Analysis ignored stack used by some 350 assembly functions

• Code used recursion (forbidden by MISRA-C guidelines)
• MISRA-C: guidelines by the Motor Industry Software Reliability

Association

“A litany of other faults were found in the code, including buffer
overflow, unsafe casting, and race conditions between tasks.”

18

What went wrong?

• Critical variables were not mirrored (stored twice)
• Most importantly, result value TargetThrottleAngle wasn’t

mirrored
• Also critical data structes of the real-time OS weren’t mirrored
• Stack overflow

– Toyota claimed stack upper bound of 41% of total memory
– Stack was actually using 94% of total memory
– Analysis ignored stack used by some 350 assembly functions

• Code used recursion (forbidden by MISRA-C guidelines)
• MISRA-C: guidelines by the Motor Industry Software Reliability

Association

“A litany of other faults were found in the code, including buffer
overflow, unsafe casting, and race conditions between tasks.”

18

Limitations of the stack

int* table_of(int num, int len) {
int table[len];
for (int i=0; i <= len; i++) {

table[i] = i * num;
}
return table; /* an int[] can be used as an int* */

}
What happens if we call this function as follows?:
int *table3 = table_of(3,10);
printf("5 times 3 is %d \n", table3[5]);

• The stack cannot preserve data beyond return of a function.
• Except of course of returned data (not pointers!)
• Obvious other limitation: size!

19

Limitations of the stack

int* table_of(int num, int len) {
int table[len];
for (int i=0; i <= len; i++) {

table[i] = i * num;
}
return table; /* an int[] can be used as an int* */

}
What happens if we call this function as follows?:
int *table3 = table_of(3,10);
printf("5 times 3 is %d \n", table3[5]);

• The stack cannot preserve data beyond return of a function.
• Except of course of returned data (not pointers!)

• Obvious other limitation: size!

19

Limitations of the stack

int* table_of(int num, int len) {
int table[len];
for (int i=0; i <= len; i++) {

table[i] = i * num;
}
return table; /* an int[] can be used as an int* */

}
What happens if we call this function as follows?:
int *table3 = table_of(3,10);
printf("5 times 3 is %d \n", table3[5]);

• The stack cannot preserve data beyond return of a function.
• Except of course of returned data (not pointers!)
• Obvious other limitation: size!

19

Table of Contents

The stack
Local variables
The stack

The heap

Special memory segments

Wrapping up memory

Reading the stack

Extra content
Memory quizzes
Finding memory bugs

20

The heap

• Think about the heap as a large piece of scrap paper
• We can request (large) continuous space on the piece of paper
• Note that “continuous” is easily ensured by virtual memory

• This space is accessible through a pointer
• Space remains valid across function calls
• Every function that “knows” a pointer to the space can use it

21

The heap

• Think about the heap as a large piece of scrap paper
• We can request (large) continuous space on the piece of paper
• Note that “continuous” is easily ensured by virtual memory
• This space is accessible through a pointer
• Space remains valid across function calls
• Every function that “knows” a pointer to the space can use it

21

malloc

• Function to request space: void *malloc(size_t nbytes)
• Need to #include <stdlib.h> to use malloc
• size_t is an unsigned integer type

• Returns a void pointer to nbytes of memory
• Can also fail, in that case, it returns NULL
• Usually pointers in C are typed, void *x is an “untyped” pointer
• A void * implicitly casts to and from any other pointer type
• Remember that this is not the case in C++!
• Example of malloc usage:

int *x = malloc(10000 * sizeof(int));
• Request for space for 10 000 integers on the heap

22

malloc

• Function to request space: void *malloc(size_t nbytes)
• Need to #include <stdlib.h> to use malloc
• size_t is an unsigned integer type
• Returns a void pointer to nbytes of memory
• Can also fail, in that case, it returns NULL

• Usually pointers in C are typed, void *x is an “untyped” pointer
• A void * implicitly casts to and from any other pointer type
• Remember that this is not the case in C++!
• Example of malloc usage:

int *x = malloc(10000 * sizeof(int));
• Request for space for 10 000 integers on the heap

22

malloc

• Function to request space: void *malloc(size_t nbytes)
• Need to #include <stdlib.h> to use malloc
• size_t is an unsigned integer type
• Returns a void pointer to nbytes of memory
• Can also fail, in that case, it returns NULL
• Usually pointers in C are typed, void *x is an “untyped” pointer
• A void * implicitly casts to and from any other pointer type
• Remember that this is not the case in C++!

• Example of malloc usage:
int *x = malloc(10000 * sizeof(int));

• Request for space for 10 000 integers on the heap

22

malloc

• Function to request space: void *malloc(size_t nbytes)
• Need to #include <stdlib.h> to use malloc
• size_t is an unsigned integer type
• Returns a void pointer to nbytes of memory
• Can also fail, in that case, it returns NULL
• Usually pointers in C are typed, void *x is an “untyped” pointer
• A void * implicitly casts to and from any other pointer type
• Remember that this is not the case in C++!
• Example of malloc usage:

int *x = malloc(10000 * sizeof(int));
• Request for space for 10 000 integers on the heap

22

NULL

• The value NULL is guaranteed to not point to a valid address
• The following code produces undefined behavior:

int *x = NULL;
int i = *x;

• Important to note: NULL is not the same as 0
• In boolean expressions, NULL evaluates to false
• These two lines have the same semantics:

if(x == NULL) { printf("NULL\n"); }
if(!x) { printf("NULL\n"); }

23

NULL

• The value NULL is guaranteed to not point to a valid address
• The following code produces undefined behavior:

int *x = NULL;
int i = *x;

• Important to note: NULL is not the same as 0

• In boolean expressions, NULL evaluates to false
• These two lines have the same semantics:

if(x == NULL) { printf("NULL\n"); }
if(!x) { printf("NULL\n"); }

23

NULL

• The value NULL is guaranteed to not point to a valid address
• The following code produces undefined behavior:

int *x = NULL;
int i = *x;

• Important to note: NULL is not the same as 0
• In boolean expressions, NULL evaluates to false
• These two lines have the same semantics:

if(x == NULL) { printf("NULL\n"); }
if(!x) { printf("NULL\n"); }

23

ALWAYS check for malloc failure!

• The following code is terribly unsafe:
int *table = malloc(TABLESIZE * sizeof(int));
for(size_t i=0;i<TABLESIZE;i++){

table[i] = 42;
}

• malloc might return NULL
• table[i] dereferences the pointer table
• Consequence: undefined behavior!
• Correct version:

int *table = malloc(TABLESIZE * sizeof(int));
if(table == NULL) exit(255);
for(size_t i=0;i<TABLESIZE;i++)
table[i] = 42;

• Could alternatively use boolean behavior of NULL:
if(!table) exit(255);

24

ALWAYS check for malloc failure!

• The following code is terribly unsafe:
int *table = malloc(TABLESIZE * sizeof(int));
for(size_t i=0;i<TABLESIZE;i++){

table[i] = 42;
}

• malloc might return NULL
• table[i] dereferences the pointer table
• Consequence: undefined behavior!
• Correct version:

int *table = malloc(TABLESIZE * sizeof(int));
if(table == NULL) exit(255);
for(size_t i=0;i<TABLESIZE;i++)
table[i] = 42;

• Could alternatively use boolean behavior of NULL:
if(!table) exit(255);

24

ALWAYS check for malloc failure!

• The following code is terribly unsafe:
int *table = malloc(TABLESIZE * sizeof(int));
for(size_t i=0;i<TABLESIZE;i++){

table[i] = 42;
}

• malloc might return NULL
• table[i] dereferences the pointer table
• Consequence: undefined behavior!

• Correct version:
int *table = malloc(TABLESIZE * sizeof(int));
if(table == NULL) exit(255);
for(size_t i=0;i<TABLESIZE;i++)
table[i] = 42;

• Could alternatively use boolean behavior of NULL:
if(!table) exit(255);

24

ALWAYS check for malloc failure!

• The following code is terribly unsafe:
int *table = malloc(TABLESIZE * sizeof(int));
for(size_t i=0;i<TABLESIZE;i++){

table[i] = 42;
}

• malloc might return NULL
• table[i] dereferences the pointer table
• Consequence: undefined behavior!
• Correct version:

int *table = malloc(TABLESIZE * sizeof(int));
if(table == NULL) exit(255);
for(size_t i=0;i<TABLESIZE;i++)
table[i] = 42;

• Could alternatively use boolean behavior of NULL:
if(!table) exit(255);

24

ALWAYS check for malloc failure!

• The following code is terribly unsafe:
int *table = malloc(TABLESIZE * sizeof(int));
for(size_t i=0;i<TABLESIZE;i++){

table[i] = 42;
}

• malloc might return NULL
• table[i] dereferences the pointer table
• Consequence: undefined behavior!
• Correct version:

int *table = malloc(TABLESIZE * sizeof(int));
if(table == NULL) exit(255);
for(size_t i=0;i<TABLESIZE;i++)
table[i] = 42;

• Could alternatively use boolean behavior of NULL:
if(!table) exit(255);

24

free

• You, the programmer, are in charge of releasing memory!
• When you don’t need some allocated memory anymore, use

free(x);
• Here, x is a pointer to previously malloc’ed memory

• Typical usage patters:
int *x = malloc(NUMX * sizeof(int));
if(x == NULL) { exit(-1); }
...
free(x);

• The calls to malloc and free can be in different functions
• Not freeing malloc’ed memory is known as a memory leak
• Can be super annoying to debug

25

free

• You, the programmer, are in charge of releasing memory!
• When you don’t need some allocated memory anymore, use

free(x);
• Here, x is a pointer to previously malloc’ed memory
• Typical usage patters:

int *x = malloc(NUMX * sizeof(int));
if(x == NULL) { exit(-1); }
...
free(x);

• The calls to malloc and free can be in different functions

• Not freeing malloc’ed memory is known as a memory leak
• Can be super annoying to debug

25

free

• You, the programmer, are in charge of releasing memory!
• When you don’t need some allocated memory anymore, use

free(x);
• Here, x is a pointer to previously malloc’ed memory
• Typical usage patters:

int *x = malloc(NUMX * sizeof(int));
if(x == NULL) { exit(-1); }
...
free(x);

• The calls to malloc and free can be in different functions
• Not freeing malloc’ed memory is known as a memory leak

• Can be super annoying to debug

25

free

• You, the programmer, are in charge of releasing memory!
• When you don’t need some allocated memory anymore, use

free(x);
• Here, x is a pointer to previously malloc’ed memory
• Typical usage patters:

int *x = malloc(NUMX * sizeof(int));
if(x == NULL) { exit(-1); }
...
free(x);

• The calls to malloc and free can be in different functions
• Not freeing malloc’ed memory is known as a memory leak
• Can be super annoying to debug

25

realloc

• Sometimes want to expand or shrink malloc’ed space
• Do this by using

void *realloc(void *ptr, size_t new_size);
• Content in the allocated area is preserved
• New space is created (or cut away) “at the end”

• This call may also return NULL
• If return value is NULL, previously allocated memory is not freed!
• Usage pattern:

xnew = realloc(x, NEWSIZE);
if(xnew == NULL) {

free(x);
exit(-1); // or continue with old size of x

} else {
x = xnew;

}

26

realloc

• Sometimes want to expand or shrink malloc’ed space
• Do this by using

void *realloc(void *ptr, size_t new_size);
• Content in the allocated area is preserved
• New space is created (or cut away) “at the end”
• This call may also return NULL
• If return value is NULL, previously allocated memory is not freed!

• Usage pattern:
xnew = realloc(x, NEWSIZE);
if(xnew == NULL) {

free(x);
exit(-1); // or continue with old size of x

} else {
x = xnew;

}

26

realloc

• Sometimes want to expand or shrink malloc’ed space
• Do this by using

void *realloc(void *ptr, size_t new_size);
• Content in the allocated area is preserved
• New space is created (or cut away) “at the end”
• This call may also return NULL
• If return value is NULL, previously allocated memory is not freed!
• Usage pattern:

xnew = realloc(x, NEWSIZE);
if(xnew == NULL) {

free(x);
exit(-1); // or continue with old size of x

} else {
x = xnew;

}

26

calloc

• Remember that data on the stack is not initialized
• Global variables are initialized
• Memory space allocated with malloc is not initialized

• Alternative: use calloc:
void *calloc(size_t nitems, size_t size)

• Request space for nitems elements of size size each
• Memory space is initialized to zero
• Example usage:

int *p = calloc(1000, sizeof(int));
if(p == NULL) { exit(-1); }

• Request space for 1000 integers, all initialized to zero

27

calloc

• Remember that data on the stack is not initialized
• Global variables are initialized
• Memory space allocated with malloc is not initialized
• Alternative: use calloc:

void *calloc(size_t nitems, size_t size)
• Request space for nitems elements of size size each
• Memory space is initialized to zero

• Example usage:
int *p = calloc(1000, sizeof(int));
if(p == NULL) { exit(-1); }

• Request space for 1000 integers, all initialized to zero

27

calloc

• Remember that data on the stack is not initialized
• Global variables are initialized
• Memory space allocated with malloc is not initialized
• Alternative: use calloc:

void *calloc(size_t nitems, size_t size)
• Request space for nitems elements of size size each
• Memory space is initialized to zero
• Example usage:

int *p = calloc(1000, sizeof(int));
if(p == NULL) { exit(-1); }

• Request space for 1000 integers, all initialized to zero

27

malloc vs. calloc

• Aside from initialization, any difference between
– int *p = malloc(nelems*sizeof(int)); and
– int *p = calloc(nelems,sizeof(int));?

• Multiplication nelems*sizeof(int) can overflow!
• Result: successful allocation, but of much less memory!
• Another difference:

– malloc doesn’t guarantee you that you can use the memory
you requested

– Linux optimistically grants you the memory
– Later access to this memory may still fail
– calloc gives you memory that is actually “backed” by the OS
– But if you don’t actually use it, it’ll slow you down

28

malloc vs. calloc

• Aside from initialization, any difference between
– int *p = malloc(nelems*sizeof(int)); and
– int *p = calloc(nelems,sizeof(int));?

• Multiplication nelems*sizeof(int) can overflow!
• Result: successful allocation, but of much less memory!

• Another difference:
– malloc doesn’t guarantee you that you can use the memory

you requested
– Linux optimistically grants you the memory
– Later access to this memory may still fail
– calloc gives you memory that is actually “backed” by the OS
– But if you don’t actually use it, it’ll slow you down

28

malloc vs. calloc

• Aside from initialization, any difference between
– int *p = malloc(nelems*sizeof(int)); and
– int *p = calloc(nelems,sizeof(int));?

• Multiplication nelems*sizeof(int) can overflow!
• Result: successful allocation, but of much less memory!
• Another difference:

– malloc doesn’t guarantee you that you can use the memory
you requested

– Linux optimistically grants you the memory
– Later access to this memory may still fail
– calloc gives you memory that is actually “backed” by the OS
– But if you don’t actually use it, it’ll slow you down

28

Heap management

• Remember free?:
int *p = malloc(1000*sizeof(int));
if(p == NULL) exit(-1);
...
free(p);

• Question: How does free know, how much memory belongs to a
pointer?

• Answer: malloc needs to write this information somewhere
• Obvious location: the heap
• One solution: maintain a table of all malloc’ed addresses and space
• Other solution: write information just before the pointer

29

Heap management

• Remember free?:
int *p = malloc(1000*sizeof(int));
if(p == NULL) exit(-1);
...
free(p);

• Question: How does free know, how much memory belongs to a
pointer?

• Answer: malloc needs to write this information somewhere
• Obvious location: the heap
• One solution: maintain a table of all malloc’ed addresses and space
• Other solution: write information just before the pointer

29

Heap management

• Remember free?:
int *p = malloc(1000*sizeof(int));
if(p == NULL) exit(-1);
...
free(p);

• Question: How does free know, how much memory belongs to a
pointer?

• Answer: malloc needs to write this information somewhere
• Obvious location: the heap

• One solution: maintain a table of all malloc’ed addresses and space
• Other solution: write information just before the pointer

29

Heap management

• Remember free?:
int *p = malloc(1000*sizeof(int));
if(p == NULL) exit(-1);
...
free(p);

• Question: How does free know, how much memory belongs to a
pointer?

• Answer: malloc needs to write this information somewhere
• Obvious location: the heap
• One solution: maintain a table of all malloc’ed addresses and space

• Other solution: write information just before the pointer

29

Heap management

• Remember free?:
int *p = malloc(1000*sizeof(int));
if(p == NULL) exit(-1);
...
free(p);

• Question: How does free know, how much memory belongs to a
pointer?

• Answer: malloc needs to write this information somewhere
• Obvious location: the heap
• One solution: maintain a table of all malloc’ed addresses and space
• Other solution: write information just before the pointer

29

Dangling pointers, double-free, . . .

• Never use a pointer after it has been freed, e.g.,
int *x = malloc(SIZEX * sizeof(int));
...
free(x);
...
printf("Let's see what the value of x is now: %p\n", x);

• This is undefined behaviour

• Also, never double-free a pointer, e.g.,
int *x = malloc(SIZEX * sizeof(int));
...
free(x);
free(x);

• Not always that obvious, you may have pointer aliases
• Pointer alias: multiple pointers to the same location
• Never “lose” the last pointer to a location
• This inevitable creates a memory leak: you cannot free anymore!

30

Dangling pointers, double-free, . . .

• Never use a pointer after it has been freed, e.g.,
int *x = malloc(SIZEX * sizeof(int));
...
free(x);
...
printf("Let's see what the value of x is now: %p\n", x);

• This is undefined behaviour
• Also, never double-free a pointer, e.g.,

int *x = malloc(SIZEX * sizeof(int));
...
free(x);
free(x);

• Not always that obvious, you may have pointer aliases
• Pointer alias: multiple pointers to the same location
• Never “lose” the last pointer to a location
• This inevitable creates a memory leak: you cannot free anymore!

30

Dangling pointers, double-free, . . .

• Never use a pointer after it has been freed, e.g.,
int *x = malloc(SIZEX * sizeof(int));
...
free(x);
...
printf("Let's see what the value of x is now: %p\n", x);

• This is undefined behaviour
• Also, never double-free a pointer, e.g.,

int *x = malloc(SIZEX * sizeof(int));
...
free(x);
free(x);

• Not always that obvious, you may have pointer aliases
• Pointer alias: multiple pointers to the same location

• Never “lose” the last pointer to a location
• This inevitable creates a memory leak: you cannot free anymore!

30

Dangling pointers, double-free, . . .

• Never use a pointer after it has been freed, e.g.,
int *x = malloc(SIZEX * sizeof(int));
...
free(x);
...
printf("Let's see what the value of x is now: %p\n", x);

• This is undefined behaviour
• Also, never double-free a pointer, e.g.,

int *x = malloc(SIZEX * sizeof(int));
...
free(x);
free(x);

• Not always that obvious, you may have pointer aliases
• Pointer alias: multiple pointers to the same location
• Never “lose” the last pointer to a location
• This inevitable creates a memory leak: you cannot free anymore!

30

Table of Contents

The stack
Local variables
The stack

The heap

Special memory segments

Wrapping up memory

Reading the stack

Extra content
Memory quizzes
Finding memory bugs

31

Memory segments

We now covered the stack and the
heap, the most important segments,
but there are more

• stack: for local variables
(including command-line
arguments)

• heap: For dynamic memory
• data segment:

– global and static
uninitialized variables
(.bss)

– global and static initialized
variables (.data)

• code segment: code (and
possibly constants)

high addresses
Command-line arguments

Stack
(grows downwards)

unused space

Heap
(grows upwards)

.bss
.data
code
(.text)

low addresses

32

Memory segments

We now covered the stack and the
heap, the most important segments,
but there are more
• stack: for local variables

(including command-line
arguments)

• heap: For dynamic memory
• data segment:

– global and static
uninitialized variables
(.bss)

– global and static initialized
variables (.data)

• code segment: code (and
possibly constants)

high addresses
Command-line arguments

Stack
(grows downwards)

unused space

Heap
(grows upwards)

.bss
.data
code
(.text)

low addresses

32

Memory segments

We now covered the stack and the
heap, the most important segments,
but there are more
• stack: for local variables

(including command-line
arguments)

• heap: For dynamic memory

• data segment:

– global and static
uninitialized variables
(.bss)

– global and static initialized
variables (.data)

• code segment: code (and
possibly constants)

high addresses
Command-line arguments

Stack
(grows downwards)

unused space

Heap
(grows upwards)

.bss
.data
code
(.text)

low addresses

32

Memory segments

We now covered the stack and the
heap, the most important segments,
but there are more
• stack: for local variables

(including command-line
arguments)

• heap: For dynamic memory
• data segment:

– global and static
uninitialized variables
(.bss)

– global and static initialized
variables (.data)

• code segment: code (and
possibly constants)

high addresses
Command-line arguments

Stack
(grows downwards)

unused space

Heap
(grows upwards)

.bss
.data
code
(.text)

low addresses

32

Memory segments

We now covered the stack and the
heap, the most important segments,
but there are more
• stack: for local variables

(including command-line
arguments)

• heap: For dynamic memory
• data segment:

– global and static
uninitialized variables
(.bss)

– global and static initialized
variables (.data)

• code segment: code (and
possibly constants)

high addresses
Command-line arguments

Stack
(grows downwards)

unused space

Heap
(grows upwards)

.bss
.data
code
(.text)

low addresses

32

Memory segments

We now covered the stack and the
heap, the most important segments,
but there are more
• stack: for local variables

(including command-line
arguments)

• heap: For dynamic memory
• data segment:

– global and static
uninitialized variables
(.bss)

– global and static initialized
variables (.data)

• code segment: code (and
possibly constants)

high addresses
Command-line arguments

Stack
(grows downwards)

unused space

Heap
(grows upwards)

.bss
.data
code
(.text)

low addresses

32

Memory segments

We now covered the stack and the
heap, the most important segments,
but there are more
• stack: for local variables

(including command-line
arguments)

• heap: For dynamic memory
• data segment:

– global and static
uninitialized variables
(.bss)

– global and static initialized
variables (.data)

• code segment: code (and
possibly constants)

high addresses
Command-line arguments

Stack
(grows downwards)

unused space

Heap
(grows upwards)

.bss
.data
code
(.text)

low addresses

32

Global variables

• Global variables are declared outside of all functions
• Example:

#include <stdio.h>
long n = 12345678;
char *s = "hello world!\n";
int a[256];
...

• The initialized variables n and s will be in .data
• The uninialized variable a will be in .bss

• The .bss section is typically initialized to zero

– Otherwise you’d be able to read what was left there by another
process

• Some platforms have a special non-initialized .bss subsection
• Example: AVR microcontrollers with a .noinit section

– Typically your processes on such a device don’t have secrets
from each other because you wrote all of them.

33

Global variables

• Global variables are declared outside of all functions
• Example:

#include <stdio.h>
long n = 12345678;
char *s = "hello world!\n";
int a[256];
...

• The initialized variables n and s will be in .data
• The uninialized variable a will be in .bss
• The .bss section is typically initialized to zero

– Otherwise you’d be able to read what was left there by another
process

• Some platforms have a special non-initialized .bss subsection
• Example: AVR microcontrollers with a .noinit section

– Typically your processes on such a device don’t have secrets
from each other because you wrote all of them.

33

Global variables

• Global variables are declared outside of all functions
• Example:

#include <stdio.h>
long n = 12345678;
char *s = "hello world!\n";
int a[256];
...

• The initialized variables n and s will be in .data
• The uninialized variable a will be in .bss
• The .bss section is typically initialized to zero

– Otherwise you’d be able to read what was left there by another
process

• Some platforms have a special non-initialized .bss subsection
• Example: AVR microcontrollers with a .noinit section

– Typically your processes on such a device don’t have secrets
from each other because you wrote all of them.

33

Global variables

• Global variables are declared outside of all functions
• Example:

#include <stdio.h>
long n = 12345678;
char *s = "hello world!\n";
int a[256];
...

• The initialized variables n and s will be in .data
• The uninialized variable a will be in .bss
• The .bss section is typically initialized to zero

– Otherwise you’d be able to read what was left there by another
process

• Some platforms have a special non-initialized .bss subsection
• Example: AVR microcontrollers with a .noinit section

– Typically your processes on such a device don’t have secrets
from each other because you wrote all of them.

33

Static variables

• A static variable is local, but keeps its value across calls
• Example:

void f()
{

static int x = 0;
printf("%d\n", x++);

}
• If x was not declared static, this function would always print 0

• Different for static x; output increases by one for every call
• Would get the same behavior if x was global
• . . . but a global x could be modified also by other functions

34

Static variables

• A static variable is local, but keeps its value across calls
• Example:

void f()
{

static int x = 0;
printf("%d\n", x++);

}
• If x was not declared static, this function would always print 0

• Different for static x; output increases by one for every call
• Would get the same behavior if x was global
• . . . but a global x could be modified also by other functions

34

Static variables

• A static variable is local, but keeps its value across calls
• Example:

void f()
{

static int x = 0;
printf("%d\n", x++);

}
• If x was not declared static, this function would always print 0
• Different for static x; output increases by one for every call

• Would get the same behavior if x was global
• . . . but a global x could be modified also by other functions

34

Static variables

• A static variable is local, but keeps its value across calls
• Example:

void f()
{

static int x = 0;
printf("%d\n", x++);

}
• If x was not declared static, this function would always print 0
• Different for static x; output increases by one for every call
• Would get the same behavior if x was global
• . . . but a global x could be modified also by other functions

34

Table of Contents

The stack
Local variables
The stack

The heap

Special memory segments

Wrapping up memory

Reading the stack

Extra content
Memory quizzes
Finding memory bugs

35

Stack vs. heap vs. data segment

Data segment
• Data in the data segment exists throughout the whole execution of

the program
– global variables accessible to every function
– static local variables only accessible to the respective function

Stack
• Space on the stack allocated automatically
• Stack space automatically removed when returning from a function
• Certain risk of overflowing the stack
Heap
• Space on the heap needs to be requested manually (malloc)
• Request may be denied (NULL return) and this must be handled
• Space on the heap needs to be freed manually (free)
• Risk of memory leaks, double frees, etc.

36

Stack vs. heap vs. data segment

Data segment
• Data in the data segment exists throughout the whole execution of

the program
– global variables accessible to every function
– static local variables only accessible to the respective function

Stack
• Space on the stack allocated automatically
• Stack space automatically removed when returning from a function
• Certain risk of overflowing the stack

Heap
• Space on the heap needs to be requested manually (malloc)
• Request may be denied (NULL return) and this must be handled
• Space on the heap needs to be freed manually (free)
• Risk of memory leaks, double frees, etc.

36

Stack vs. heap vs. data segment

Data segment
• Data in the data segment exists throughout the whole execution of

the program
– global variables accessible to every function
– static local variables only accessible to the respective function

Stack
• Space on the stack allocated automatically
• Stack space automatically removed when returning from a function
• Certain risk of overflowing the stack
Heap
• Space on the heap needs to be requested manually (malloc)
• Request may be denied (NULL return) and this must be handled
• Space on the heap needs to be freed manually (free)
• Risk of memory leaks, double frees, etc.

36

Table of Contents

The stack
Local variables
The stack

The heap

Special memory segments

Wrapping up memory

Reading the stack

Extra content
Memory quizzes
Finding memory bugs

37

Remember printf?

int printf(const char *format, ...);
[printf] writes the output under the control of a format string
that specifies how subsequent arguments are converted for out-
put. src: man 3
printf

38

Having fun with printf

What does the following program do?
// program.c
int main(int argc, char* argv[]) {

printf(argv[1]);
}

~$ gcc -Wall -Wextra -Wpedantic -o program program.c
(gcc8 complains **only** about unused variable argc)
~$./program hi
hi

What happens if we run ./program %x?
It will print the second argument of printf, even if it’s not there!

39

Having fun with printf

What does the following program do wrongly?
// program.c
int main(int argc, char* argv[]) {

printf(argv[1]);
}

~$ gcc -Wall -Wextra -Wpedantic -o program program.c
(gcc8 complains **only** about unused variable argc)
~$./program hi
hi

What happens if we run ./program %x?
It will print the second argument of printf, even if it’s not there!

39

Having fun with printf

What does the following program do wrongly?
// program.c
int main(int argc, char* argv[]) {

// should have been printf("%s", argv[1]);
printf(argv[1]);

}
How do we make this program misbehave?

What happens if we run ./program %x?
It will print the second argument of printf, even if it’s not there!

39

Having fun with printf

What does the following program do wrongly?
// program.c
int main(int argc, char* argv[]) {

// should have been printf("%s", argv[1]);
printf(argv[1]);

}
What happens if we run ./program %x?

It will print the second argument of printf, even if it’s not there!

39

Having fun with printf

What does the following program do wrongly?
// program.c
int main(int argc, char* argv[]) {

// should have been printf("%s", argv[1]);
printf(argv[1]);

}
What happens if we run ./program %x?
It will print the second argument of printf, even if it’s not there!

39

Remember printf?

int printf(const char *format, ...);
[printf] writes the output under the control of a format string
that specifies how subsequent arguments are converted for out-
put. src: man 3
printf

40

Format string attacks

• Reading data known since 1989
• First attack that broke something in 1999
• Remember, C is from 1972!
• Allows to read data from the stack and heap.
• Easy to spot: if there is no " after printf(, it’s suspicious
• If we want compiler warnings from gcc, we need to use

-Wformat=2, because of course why switch this on by default.
• The clang compiler does report these by default.

41

Side-step: calling a function on x86_64

If we want to call a function func(a, b, c, d, e, f, g, h), your
computer does the following:

1. Put return address on the stack
2. Store the frame pointer
3. Put the first six arguments (a. . . f) in registers
4. Put the remaining arguments (g, h) on the

stack.
5. Jump to the address of func

Why do we put arguments into registers?

... ↓ 0x7f. . .

calling function

...

Putting the first few arguments in registers saves a lot of time waiting for
memory.

42

Side-step: calling a function on x86_64

If we want to call a function func(a, b, c, d, e, f, g, h), your
computer does the following:

1. Put return address on the stack

2. Store the frame pointer
3. Put the first six arguments (a. . . f) in registers
4. Put the remaining arguments (g, h) on the

stack.
5. Jump to the address of func

Why do we put arguments into registers?

... ↓ 0x7f. . .

calling function

return address

...

Putting the first few arguments in registers saves a lot of time waiting for
memory.

42

Side-step: calling a function on x86_64

If we want to call a function func(a, b, c, d, e, f, g, h), your
computer does the following:

1. Put return address on the stack
2. Store the frame pointer

3. Put the first six arguments (a. . . f) in registers
4. Put the remaining arguments (g, h) on the

stack.
5. Jump to the address of func

Why do we put arguments into registers?

... ↓ 0x7f. . .

calling function

return address

frame pointer

...

Putting the first few arguments in registers saves a lot of time waiting for
memory.

42

Side-step: calling a function on x86_64

If we want to call a function func(a, b, c, d, e, f, g, h), your
computer does the following:

1. Put return address on the stack
2. Store the frame pointer
3. Put the first six arguments (a. . . f) in registers

4. Put the remaining arguments (g, h) on the
stack.

5. Jump to the address of func
Why do we put arguments into registers?

... ↓ 0x7f. . .

calling function

return address

frame pointer

extra arguments

...

Putting the first few arguments in registers saves a lot of time waiting for
memory.

42

Side-step: calling a function on x86_64

If we want to call a function func(a, b, c, d, e, f, g, h), your
computer does the following:

1. Put return address on the stack
2. Store the frame pointer
3. Put the first six arguments (a. . . f) in registers
4. Put the remaining arguments (g, h) on the

stack.

5. Jump to the address of func
Why do we put arguments into registers?

... ↓ 0x7f. . .

calling function

return address

frame pointer

extra arguments

local variables
...

Putting the first few arguments in registers saves a lot of time waiting for
memory.

42

Side-step: calling a function on x86_64

If we want to call a function func(a, b, c, d, e, f, g, h), your
computer does the following:

1. Put return address on the stack
2. Store the frame pointer
3. Put the first six arguments (a. . . f) in registers
4. Put the remaining arguments (g, h) on the

stack.
5. Jump to the address of func

Why do we put arguments into registers?

... ↓ 0x7f. . .

calling function

return address

frame pointer

extra arguments

local variables
...

Putting the first few arguments in registers saves a lot of time waiting for
memory.

42

Side-step: calling a function on x86_64

If we want to call a function func(a, b, c, d, e, f, g, h), your
computer does the following:

1. Put return address on the stack
2. Store the frame pointer
3. Put the first six arguments (a. . . f) in registers
4. Put the remaining arguments (g, h) on the

stack.
5. Jump to the address of func

Why do we put arguments into registers?

... ↓ 0x7f. . .

calling function

return address

frame pointer

extra arguments

local variables
...

Putting the first few arguments in registers saves a lot of time waiting for
memory.

42

Side-step: calling a function on x86_64

If we want to call a function func(a, b, c, d, e, f, g, h), your
computer does the following:

1. Put return address on the stack
2. Store the frame pointer
3. Put the first six arguments (a. . . f) in registers
4. Put the remaining arguments (g, h) on the

stack.
5. Jump to the address of func

Why do we put arguments into registers?

... ↓ 0x7f. . .

calling function

return address

frame pointer

extra arguments

local variables
...

Putting the first few arguments in registers saves a lot of time waiting for
memory.

42

So what do we see?

• So if we run ./printf %p, we will print the value of the second
register that would contain an argument.

• If we print ./printf ’%7$p’, we will print the first 8 bytes on the
stack.

43

printf is a powerful debugger
#include <stdio.h>
void do_print(char* string)

{ printf(string); }

int main(int argc, char** argv) {
long bla = 0xDEADC0DECAFEF00D;
do_print(argv[1]);

}

./printf "$(perl -e ’print "%p "x14’)"

... ↓ 0x7f. . .

bla = 0x...

return address

frame pointer

(local variables)

...

44

printf is a powerful debugger
#include <stdio.h>
void do_print(char* string)

{ printf(string); }

int main(int argc, char** argv) {
long bla = 0xDEADC0DECAFEF00D;
do_print(argv[1]);

}

./printf "$(perl -e ’print "%p "x14’)"

... ↓ 0x7f. . .

bla = 0x...

return address

frame pointer

(local variables)

...

44

printf is a powerful debugger
#include <stdio.h>
void do_print(char* string)

{ printf(string); }

int main(int argc, char** argv) {
long bla = 0xDEADC0DECAFEF00D;
do_print(argv[1]);

}

./printf "$(perl -e ’print "%p "x14’)"

... ↓ 0x7f. . .

bla = 0x...

return address

frame pointer

(local variables)

...

0x7fffffffe4e8 0x7fffffffe500 0x7ffff7f82578 0x7ffff7f83be0
0x7ffff7f83be0 (nil) 0x7fffffffe810 0x7fffffffe400 0x555555555199
0x7fffffffe4e8 0x255555050 0x7fffffffe4e0 0xdeadc0decafef00d
0x5555555551d0

44

printf is a powerful debugger
#include <stdio.h>
void do_print(char* string)

{ printf(string); }

int main(int argc, char** argv) {
long bla = 0xDEADC0DECAFEF00D;
do_print(argv[1]);

}

./printf "$(perl -e ’print "%p "x14’)"

... ↓ 0x7f. . .

bla = 0x...

return address

frame pointer

(local variables)

...

0x7fffffffe4e8 0x7fffffffe500 0x7ffff7f82578 0x7ffff7f83be0
0x7ffff7f83be0 (nil) 0x7fffffffe810 0x7fffffffe400 0x555555555199
0x7fffffffe4e8 0x255555050 0x7fffffffe4e0 0xdeadc0decafef00d
0x5555555551d0

44

Table of Contents

The stack
Local variables
The stack

The heap

Special memory segments

Wrapping up memory

Reading the stack

Extra content
Memory quizzes
Finding memory bugs

45

What’s wrong with this code (part 1)?

int f()
{

int *a = malloc(100 * sizeof(int));
if(a == NULL) return -1;
char *x = (char *)a;
...
free(x);
free(a);

}

• Fairly simple: double-free.

46

What’s wrong with this code (part 1)?

int f()
{

int *a = malloc(100 * sizeof(int));
if(a == NULL) return -1;
char *x = (char *)a;
...
free(x);
free(a);

}

• Fairly simple: double-free.

46

What’s wrong with this code (part 1)?

int f()
{

int *a = malloc(100 * sizeof(int));
if(a == NULL) return -1;
char *x = (char *)a;
...
free(x);
free(a);

}

• Fairly simple: double-free.

46

What’s wrong with this code (part 2)?

int* f()
{

int a[100];
for(i=0;i<100;i++)

a[i] = i;
return a;

}

• Return type is int *, returning a is not a type problem
• Remember that an array can “decay” to a pointer to its first element
• Code is syntactically completely correct C
• Returning pointer to a local variable is undefined behavior
• Never do this, not even for debugging purposes
• Any decent compiler will put out warnings

47

What’s wrong with this code (part 2)?

int* f()
{

int a[100];
for(i=0;i<100;i++)

a[i] = i;
return a;

}

• Return type is int *, returning a is not a type problem
• Remember that an array can “decay” to a pointer to its first element
• Code is syntactically completely correct C
• Returning pointer to a local variable is undefined behavior
• Never do this, not even for debugging purposes
• Any decent compiler will put out warnings

47

What’s wrong with this code (part 2)?

int* f()
{

int a[100];
for(i=0;i<100;i++)

a[i] = i;
return a;

}

• Return type is int *, returning a is not a type problem
• Remember that an array can “decay” to a pointer to its first element

• Code is syntactically completely correct C
• Returning pointer to a local variable is undefined behavior
• Never do this, not even for debugging purposes
• Any decent compiler will put out warnings

47

What’s wrong with this code (part 2)?

int* f()
{

int a[100];
for(i=0;i<100;i++)

a[i] = i;
return a;

}

• Return type is int *, returning a is not a type problem
• Remember that an array can “decay” to a pointer to its first element
• Code is syntactically completely correct C
• Returning pointer to a local variable is undefined behavior
• Never do this, not even for debugging purposes

• Any decent compiler will put out warnings

47

What’s wrong with this code (part 2)?

int* f()
{

int a[100];
for(i=0;i<100;i++)

a[i] = i;
return a;

}

• Return type is int *, returning a is not a type problem
• Remember that an array can “decay” to a pointer to its first element
• Code is syntactically completely correct C
• Returning pointer to a local variable is undefined behavior
• Never do this, not even for debugging purposes
• Any decent compiler will put out warnings

47

What’s wrong with this code (part 3)?

int f()
{

int *a = malloc(100 * sizeof(int));
int x = 5;
int *y = a;
a = &x;
free(a);
return x;

}

• No check whether malloc returned NULL
• The function is so wrong, that this isn’t even really a problem
• The free is used on a stack address
• The value of y is lost after return
• Cannot free the allocated memory anymore

48

What’s wrong with this code (part 3)?

int f()
{

int *a = malloc(100 * sizeof(int));
int x = 5;
int *y = a;
a = &x;
free(a);
return x;

}

• No check whether malloc returned NULL
• The function is so wrong, that this isn’t even really a problem
• The free is used on a stack address
• The value of y is lost after return
• Cannot free the allocated memory anymore

48

What’s wrong with this code (part 3)?

int f()
{

int *a = malloc(100 * sizeof(int));
int x = 5;
int *y = a;
a = &x;
free(a);
return x;

}

• No check whether malloc returned NULL
• The function is so wrong, that this isn’t even really a problem

• The free is used on a stack address
• The value of y is lost after return
• Cannot free the allocated memory anymore

48

What’s wrong with this code (part 3)?

int f()
{

int *a = malloc(100 * sizeof(int));
int x = 5;
int *y = a;
a = &x;
free(a);
return x;

}

• No check whether malloc returned NULL
• The function is so wrong, that this isn’t even really a problem
• The free is used on a stack address

• The value of y is lost after return
• Cannot free the allocated memory anymore

48

What’s wrong with this code (part 3)?

int f()
{

int *a = malloc(100 * sizeof(int));
int x = 5;
int *y = a;
a = &x;
free(a);
return x;

}

• No check whether malloc returned NULL
• The function is so wrong, that this isn’t even really a problem
• The free is used on a stack address
• The value of y is lost after return
• Cannot free the allocated memory anymore

48

valgrind

• Memory bugs are hard to find manually
• They are one of the biggest problems in C code
• Luckily there is tool assistance: valgrind

• Run code is a sort of virtual machine, include memory checks
• Muuuuuuch slower than actually running the code, but:

– Find memory leaks (malloc without free)
– Find access to freed memory
– Find double-free
– Find branches and memory access depending on uninitialized data

• Many more tools beyond the memory checker in valgrind, e.g.,
– cachegrind, a cache profiler
– callgrind, generating call graphs

• valgrind is a dynamic analyzer, not static
• For example, no guarantees of branch coverage
• Generally good practice:

– run your code in valgrind before submitting/publishing
– make sure that valgrind reports no errors

49

valgrind

• Memory bugs are hard to find manually
• They are one of the biggest problems in C code
• Luckily there is tool assistance: valgrind
• Run code is a sort of virtual machine, include memory checks
• Muuuuuuch slower than actually running the code, but:

– Find memory leaks (malloc without free)
– Find access to freed memory
– Find double-free
– Find branches and memory access depending on uninitialized data

• Many more tools beyond the memory checker in valgrind, e.g.,
– cachegrind, a cache profiler
– callgrind, generating call graphs

• valgrind is a dynamic analyzer, not static
• For example, no guarantees of branch coverage
• Generally good practice:

– run your code in valgrind before submitting/publishing
– make sure that valgrind reports no errors

49

valgrind

• Memory bugs are hard to find manually
• They are one of the biggest problems in C code
• Luckily there is tool assistance: valgrind
• Run code is a sort of virtual machine, include memory checks
• Muuuuuuch slower than actually running the code, but:

– Find memory leaks (malloc without free)
– Find access to freed memory
– Find double-free
– Find branches and memory access depending on uninitialized data

• Many more tools beyond the memory checker in valgrind, e.g.,
– cachegrind, a cache profiler
– callgrind, generating call graphs

• valgrind is a dynamic analyzer, not static
• For example, no guarantees of branch coverage
• Generally good practice:

– run your code in valgrind before submitting/publishing
– make sure that valgrind reports no errors

49

valgrind

• Memory bugs are hard to find manually
• They are one of the biggest problems in C code
• Luckily there is tool assistance: valgrind
• Run code is a sort of virtual machine, include memory checks
• Muuuuuuch slower than actually running the code, but:

– Find memory leaks (malloc without free)
– Find access to freed memory
– Find double-free
– Find branches and memory access depending on uninitialized data

• Many more tools beyond the memory checker in valgrind, e.g.,
– cachegrind, a cache profiler
– callgrind, generating call graphs

• valgrind is a dynamic analyzer, not static
• For example, no guarantees of branch coverage

• Generally good practice:
– run your code in valgrind before submitting/publishing
– make sure that valgrind reports no errors

49

valgrind

• Memory bugs are hard to find manually
• They are one of the biggest problems in C code
• Luckily there is tool assistance: valgrind
• Run code is a sort of virtual machine, include memory checks
• Muuuuuuch slower than actually running the code, but:

– Find memory leaks (malloc without free)
– Find access to freed memory
– Find double-free
– Find branches and memory access depending on uninitialized data

• Many more tools beyond the memory checker in valgrind, e.g.,
– cachegrind, a cache profiler
– callgrind, generating call graphs

• valgrind is a dynamic analyzer, not static
• For example, no guarantees of branch coverage
• Generally good practice:

– run your code in valgrind before submitting/publishing
– make sure that valgrind reports no errors

49

Sanitizers

• Another way to do these sorts of checks is using libasan
• Compile your code with -fsanitize=address
• Will slow down your code because it’s doing checks all the time
• Will terminate when it finds bad behaviour
• Other sanitizers available

– -fsanitize=undefined
– -fsanitize=memory
– -fsanitize=thread
– -fsanitize=leak

• Not all of them can be used together, some are not useful by
themselves.

50

	The stack
	Local variables
	The stack

	The heap
	Special memory segments
	Wrapping up memory
	Reading the stack
	Extra content
	Memory quizzes
	Finding memory bugs

