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Last week

• Arrays

• Pointers

– Pointers to pointers
– Pointers too (see previous point)

• int* a_ptr = &a;
• Dereferencing *a
• Strings
• The horrible ways strings ruin your day
• Some bit of slide-karaoke about memory that wasn’t prepared
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This week

The stack
Local variables
The stack

The heap

Special memory segments

Wrapping up memory

Reading the stack

Extra content
Memory quizzes
Finding memory bugs
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Local variables

Imagine the following program
#include "headers.h"

int main(int argc, char* argv[]){
int a = 3;
int b = 4;
int c = some_function();
return 0;

}

int some_function() {
char arr[100] = {0};
return 3;

}
How could we manage variables efficiently?

5



Properties of local variables

Local variables are:
• local to the function

– they can’t be accessed by other functions
• local to the function call

– If you call the function multiple times, each has its own copy of
its state

– This holds especially when you’re calling it recursively

• Only exist during the function call
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Option: pre-allocating all variables beforehand

Let’s turn every local variable into a global variable
• Having a single copy per declared local variable breaks the isolation

properties

• To allow every function call its own local variables you’d need to
fully trace the entire call graph and create copies

– Not possible if your program does stuff differently based on the
input

– You’d possibly need lots and lots of space

• Clearly not an option
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Active management of local variables

Assuming we don’t know better, let’s ask the memory manager for space
each time we create a variable
• Requires setup code to be executed every function call for every

variable

– Would need to check: where have I got space? Is the memory
fragmented?

• Needs to make sure you don’t have collisions between function calls
• Execute expensive clean-up code per variable when the function

returns
There’s such a manager for heap variables, but those are usually
somewhat long-lived! We can do better for the local variables.
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Function calls

Realise that function calls are like a ladder

• You can go up a step on the ladder (call a function)

– And go another step up, when that function calls another
function

▶ And another step up when that function calls another
function

▶ Then we step down when we return

– We step down when we return

• Another step down when we return
• Going sideways is not possible (without multithreading)
• At the bottom of the ladder is int main()
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Stacking variables

• We use this behaviour to manage our local variables on the stack

• Push your local variables on top of the stack
• When you call a function, also push those variables on top of the

stack
• When that function returns, just pop off those variables from the

stack and they’re gone
• Only thing to keep track of: where is the top of the stack
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Stack frames and the stack pointer

Example:
int func(int a, int b)
{

...
return 10001;

}

int main(void)
{

...
int x = func(42, 23)
...

}

high addresses
Command-line arguments

stack pointer −→

stack frame of
main()

Heap
.bss
.data
code
(.text)

low addresses
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A zoom into the stack frame

• Stack before the function call

• Caller (main) first puts arguments
for func on the stack

• Caller pushes the return address
onto the stack

• ???
• Callee pushes local variables onto

the stack

high addresses
Command-line arguments

stack frame of
main()

arguments of func()

return address
???

local variables

stack pointer −→

Heap

...

low addresses
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The frame pointer

• So what’s with the ???. . . ?

• Traditionally also have an frame
pointer

• Pointing to the end (high
address) of the active stack frame

• On x86 in ebp register (AMD64:
rbp)

• Function call also saves previous
frame pointer on the stack

• On AMD64 commonly omitted:

– Faster function calls
– One additional register

available

high addresses
Command-line arguments

stack frame of
main()

arguments of func()

return address
saved frame pointer

local variables
frame pointer −→

stack pointer −→

Heap

...

low addresses
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Other stuff on the stack

So the other helpful uses of the stack:
• Passing function arguments†

– Push them on the stack before jumping to the function
• Keep track of the return address

– Push it on the stack
– Return from function: pop local vars, pop arguments, get return

address, jump back

• Store the return value‡

– Returning from function: pop vars, args, return address, push result,
jump back

• Managing the frame pointer
† The first 4 (Windows) / 6 (rest) arguments are passed via registers on

AMD64 for speed reasons
‡ Returned via register on x64, ARM, ARMv8 and probably other platforms
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Stack overflow

• You’re probably aware of https://stackoverflow.com
• Named for running out of stack space: a stack overflow
• Limits set by:

– Hardware
– Operating system

• Get (set) limit on Linux via
– ulimit -s (ulimit -s kb) on the shell (sets for the current

shell)
– getrlimit() (setrlimit()) in C

15
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Common stack bugs

• Stack overflow caused by

– (infinite) recursion
– Creating too-large local variables

• Stack variables are not auto-initialised

– If you read them, you’ll find what previous function call put
there

• The stack mixes program and control data
• Writing beyond buffers may overwrite frame pointers or return

addresses

– Segmentation fault, if you overwrote with garbage
– A hacked system, if you overwrote with the address of your

attack code. . .
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. . . how bad is “wrong” exactly?

“On Thursday October 24, 2013, an Oklahoma court ruled against
Toyota in a case of unintended acceleration that lead to the death of one
the occupants. Central to the trial was the Engine Control Module’s
(ECM) firmware.”

17
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What went wrong?

• Critical variables were not mirrored (stored twice)
• Most importantly, result value TargetThrottleAngle wasn’t

mirrored
• Also critical data structes of the real-time OS weren’t mirrored

• Stack overflow
– Toyota claimed stack upper bound of 41% of total memory
– Stack was actually using 94% of total memory
– Analysis ignored stack used by some 350 assembly functions

• Code used recursion (forbidden by MISRA-C guidelines)
• MISRA-C: guidelines by the Motor Industry Software Reliability

Association

“A litany of other faults were found in the code, including buffer
overflow, unsafe casting, and race conditions between tasks.”
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Limitations of the stack

int* table_of(int num, int len) {
int table[len];
for (int i=0; i <= len; i++) {

table[i] = i * num;
}
return table; /* an int[] can be used as an int* */

}
What happens if we call this function as follows?:
int *table3 = table_of(3,10);
printf("5 times 3 is %d \n", table3[5]);

• The stack cannot preserve data beyond return of a function.
• Except of course of returned data (not pointers!)
• Obvious other limitation: size!
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The heap

• Think about the heap as a large piece of scrap paper
• We can request (large) continuous space on the piece of paper
• Note that “continuous” is easily ensured by virtual memory

• This space is accessible through a pointer
• Space remains valid across function calls
• Every function that “knows” a pointer to the space can use it

21



The heap

• Think about the heap as a large piece of scrap paper
• We can request (large) continuous space on the piece of paper
• Note that “continuous” is easily ensured by virtual memory
• This space is accessible through a pointer
• Space remains valid across function calls
• Every function that “knows” a pointer to the space can use it

21



malloc

• Function to request space: void *malloc(size_t nbytes)
• Need to #include <stdlib.h> to use malloc
• size_t is an unsigned integer type

• Returns a void pointer to nbytes of memory
• Can also fail, in that case, it returns NULL
• Usually pointers in C are typed, void *x is an “untyped” pointer
• A void * implicitly casts to and from any other pointer type
• Remember that this is not the case in C++!
• Example of malloc usage:

int *x = malloc(10000 * sizeof(int));
• Request for space for 10 000 integers on the heap
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NULL

• The value NULL is guaranteed to not point to a valid address
• The following code produces undefined behavior:

int *x = NULL;
int i = *x;

• Important to note: NULL is not the same as 0
• In boolean expressions, NULL evaluates to false
• These two lines have the same semantics:

if(x == NULL) { printf("NULL\n"); }
if(!x) { printf("NULL\n"); }

23



NULL

• The value NULL is guaranteed to not point to a valid address
• The following code produces undefined behavior:

int *x = NULL;
int i = *x;

• Important to note: NULL is not the same as 0

• In boolean expressions, NULL evaluates to false
• These two lines have the same semantics:

if(x == NULL) { printf("NULL\n"); }
if(!x) { printf("NULL\n"); }

23



NULL

• The value NULL is guaranteed to not point to a valid address
• The following code produces undefined behavior:

int *x = NULL;
int i = *x;

• Important to note: NULL is not the same as 0
• In boolean expressions, NULL evaluates to false
• These two lines have the same semantics:

if(x == NULL) { printf("NULL\n"); }
if(!x) { printf("NULL\n"); }

23



ALWAYS check for malloc failure!

• The following code is terribly unsafe:
int *table = malloc(TABLESIZE * sizeof(int));
for(size_t i=0;i<TABLESIZE;i++){

table[i] = 42;
}

• malloc might return NULL
• table[i] dereferences the pointer table
• Consequence: undefined behavior!
• Correct version:

int *table = malloc(TABLESIZE * sizeof(int));
if(table == NULL) exit(255);
for(size_t i=0;i<TABLESIZE;i++)
table[i] = 42;

• Could alternatively use boolean behavior of NULL:
if(!table) exit(255);
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free

• You, the programmer, are in charge of releasing memory!
• When you don’t need some allocated memory anymore, use

free(x);
• Here, x is a pointer to previously malloc’ed memory

• Typical usage patters:
int *x = malloc(NUMX * sizeof(int));
if(x == NULL) { exit(-1); }
...
free(x);

• The calls to malloc and free can be in different functions
• Not freeing malloc’ed memory is known as a memory leak
• Can be super annoying to debug

25



free

• You, the programmer, are in charge of releasing memory!
• When you don’t need some allocated memory anymore, use

free(x);
• Here, x is a pointer to previously malloc’ed memory
• Typical usage patters:

int *x = malloc(NUMX * sizeof(int));
if(x == NULL) { exit(-1); }
...
free(x);

• The calls to malloc and free can be in different functions

• Not freeing malloc’ed memory is known as a memory leak
• Can be super annoying to debug

25



free

• You, the programmer, are in charge of releasing memory!
• When you don’t need some allocated memory anymore, use

free(x);
• Here, x is a pointer to previously malloc’ed memory
• Typical usage patters:

int *x = malloc(NUMX * sizeof(int));
if(x == NULL) { exit(-1); }
...
free(x);

• The calls to malloc and free can be in different functions
• Not freeing malloc’ed memory is known as a memory leak

• Can be super annoying to debug

25



free

• You, the programmer, are in charge of releasing memory!
• When you don’t need some allocated memory anymore, use

free(x);
• Here, x is a pointer to previously malloc’ed memory
• Typical usage patters:

int *x = malloc(NUMX * sizeof(int));
if(x == NULL) { exit(-1); }
...
free(x);

• The calls to malloc and free can be in different functions
• Not freeing malloc’ed memory is known as a memory leak
• Can be super annoying to debug

25



realloc

• Sometimes want to expand or shrink malloc’ed space
• Do this by using

void *realloc(void *ptr, size_t new_size);
• Content in the allocated area is preserved
• New space is created (or cut away) “at the end”

• This call may also return NULL
• If return value is NULL, previously allocated memory is not freed!
• Usage pattern:

xnew = realloc(x, NEWSIZE);
if(xnew == NULL) {

free(x);
exit(-1); // or continue with old size of x

} else {
x = xnew;

}
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calloc

• Remember that data on the stack is not initialized
• Global variables are initialized
• Memory space allocated with malloc is not initialized

• Alternative: use calloc:
void *calloc(size_t nitems, size_t size)

• Request space for nitems elements of size size each
• Memory space is initialized to zero
• Example usage:

int *p = calloc(1000, sizeof(int));
if(p == NULL) { exit(-1); }

• Request space for 1000 integers, all initialized to zero
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malloc vs. calloc

• Aside from initialization, any difference between
– int *p = malloc(nelems*sizeof(int)); and
– int *p = calloc(nelems,sizeof(int));?

• Multiplication nelems*sizeof(int) can overflow!
• Result: successful allocation, but of much less memory!
• Another difference:

– malloc doesn’t guarantee you that you can use the memory
you requested

– Linux optimistically grants you the memory
– Later access to this memory may still fail
– calloc gives you memory that is actually “backed” by the OS
– But if you don’t actually use it, it’ll slow you down
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Heap management

• Remember free?:
int *p = malloc(1000*sizeof(int));
if(p == NULL) exit(-1);
...
free(p);

• Question: How does free know, how much memory belongs to a
pointer?

• Answer: malloc needs to write this information somewhere
• Obvious location: the heap
• One solution: maintain a table of all malloc’ed addresses and space
• Other solution: write information just before the pointer
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Dangling pointers, double-free, . . .

• Never use a pointer after it has been freed, e.g.,
int *x = malloc(SIZEX * sizeof(int));
...
free(x);
...
printf("Let's see what the value of x is now: %p\n", x);

• This is undefined behaviour

• Also, never double-free a pointer, e.g.,
int *x = malloc(SIZEX * sizeof(int));
...
free(x);
free(x);

• Not always that obvious, you may have pointer aliases
• Pointer alias: multiple pointers to the same location
• Never “lose” the last pointer to a location
• This inevitable creates a memory leak: you cannot free anymore!
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Memory segments

We now covered the stack and the
heap, the most important segments,
but there are more

• stack: for local variables
(including command-line
arguments)

• heap: For dynamic memory
• data segment:

– global and static
uninitialized variables
(.bss)

– global and static initialized
variables (.data)

• code segment: code (and
possibly constants)

high addresses
Command-line arguments

Stack
(grows downwards)

unused space

Heap
(grows upwards)

.bss
.data
code
(.text)

low addresses
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Global variables

• Global variables are declared outside of all functions
• Example:

#include <stdio.h>
long n = 12345678;
char *s = "hello world!\n";
int a[256];
...

• The initialized variables n and s will be in .data
• The uninialized variable a will be in .bss

• The .bss section is typically initialized to zero

– Otherwise you’d be able to read what was left there by another
process

• Some platforms have a special non-initialized .bss subsection
• Example: AVR microcontrollers with a .noinit section

– Typically your processes on such a device don’t have secrets
from each other because you wrote all of them.
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Static variables

• A static variable is local, but keeps its value across calls
• Example:

void f()
{

static int x = 0;
printf("%d\n", x++);

}
• If x was not declared static, this function would always print 0

• Different for static x; output increases by one for every call
• Would get the same behavior if x was global
• . . . but a global x could be modified also by other functions
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Stack vs. heap vs. data segment

Data segment
• Data in the data segment exists throughout the whole execution of

the program
– global variables accessible to every function
– static local variables only accessible to the respective function

Stack
• Space on the stack allocated automatically
• Stack space automatically removed when returning from a function
• Certain risk of overflowing the stack
Heap
• Space on the heap needs to be requested manually (malloc)
• Request may be denied (NULL return) and this must be handled
• Space on the heap needs to be freed manually (free)
• Risk of memory leaks, double frees, etc.
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Remember printf?

int printf(const char *format, ...);
[printf] writes the output under the control of a format string
that specifies how subsequent arguments are converted for out-
put. src: man 3
printf
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Having fun with printf

What does the following program do?
// program.c
int main(int argc, char* argv[]) {

printf(argv[1]);
}

~$ gcc -Wall -Wextra -Wpedantic -o program program.c
(gcc8 complains **only** about unused variable argc)
~$ ./program hi
hi

What happens if we run ./program %x?
It will print the second argument of printf, even if it’s not there!

39



Having fun with printf

What does the following program do wrongly?
// program.c
int main(int argc, char* argv[]) {

printf(argv[1]);
}

~$ gcc -Wall -Wextra -Wpedantic -o program program.c
(gcc8 complains **only** about unused variable argc)
~$ ./program hi
hi

What happens if we run ./program %x?
It will print the second argument of printf, even if it’s not there!

39



Having fun with printf

What does the following program do wrongly?
// program.c
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// should have been printf("%s", argv[1]);
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Format string attacks

• Reading data known since 1989
• First attack that broke something in 1999
• Remember, C is from 1972!
• Allows to read data from the stack and heap.
• Easy to spot: if there is no " after printf(, it’s suspicious
• If we want compiler warnings from gcc, we need to use

-Wformat=2, because of course why switch this on by default.
• The clang compiler does report these by default.
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Side-step: calling a function on x86_64

If we want to call a function func(a, b, c, d, e, f, g, h), your
computer does the following:

1. Put return address on the stack
2. Store the frame pointer
3. Put the first six arguments (a. . . f) in registers
4. Put the remaining arguments (g, h) on the

stack.
5. Jump to the address of func

Why do we put arguments into registers?

... ↓ 0x7f. . .

calling function

...

Putting the first few arguments in registers saves a lot of time waiting for
memory.
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So what do we see?

• So if we run ./printf %p, we will print the value of the second
register that would contain an argument.

• If we print ./printf ’%7$p’, we will print the first 8 bytes on the
stack.
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printf is a powerful debugger
#include <stdio.h>
void do_print(char* string)

{ printf(string); }

int main(int argc, char** argv) {
long bla = 0xDEADC0DECAFEF00D;
do_print(argv[1]);

}

./printf "$(perl -e ’print "%p "x14’)"

... ↓ 0x7f. . .

bla = 0x...

return address

frame pointer

(local variables)

...
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What’s wrong with this code (part 1)?

int f()
{

int *a = malloc(100 * sizeof(int));
if(a == NULL) return -1;
char *x = (char *)a;
...
free(x);
free(a);

}

• Fairly simple: double-free.
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What’s wrong with this code (part 2)?

int* f()
{

int a[100];
for(i=0;i<100;i++)

a[i] = i;
return a;

}

• Return type is int *, returning a is not a type problem
• Remember that an array can “decay” to a pointer to its first element
• Code is syntactically completely correct C
• Returning pointer to a local variable is undefined behavior
• Never do this, not even for debugging purposes
• Any decent compiler will put out warnings
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What’s wrong with this code (part 3)?

int f()
{

int *a = malloc(100 * sizeof(int));
int x = 5;
int *y = a;
a = &x;
free(a);
return x;

}

• No check whether malloc returned NULL
• The function is so wrong, that this isn’t even really a problem
• The free is used on a stack address
• The value of y is lost after return
• Cannot free the allocated memory anymore
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valgrind

• Memory bugs are hard to find manually
• They are one of the biggest problems in C code
• Luckily there is tool assistance: valgrind

• Run code is a sort of virtual machine, include memory checks
• Muuuuuuch slower than actually running the code, but:

– Find memory leaks (malloc without free)
– Find access to freed memory
– Find double-free
– Find branches and memory access depending on uninitialized data

• Many more tools beyond the memory checker in valgrind, e.g.,
– cachegrind, a cache profiler
– callgrind, generating call graphs

• valgrind is a dynamic analyzer, not static
• For example, no guarantees of branch coverage
• Generally good practice:

– run your code in valgrind before submitting/publishing
– make sure that valgrind reports no errors
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• Muuuuuuch slower than actually running the code, but:

– Find memory leaks (malloc without free)
– Find access to freed memory
– Find double-free
– Find branches and memory access depending on uninitialized data

• Many more tools beyond the memory checker in valgrind, e.g.,
– cachegrind, a cache profiler
– callgrind, generating call graphs

• valgrind is a dynamic analyzer, not static
• For example, no guarantees of branch coverage
• Generally good practice:

– run your code in valgrind before submitting/publishing
– make sure that valgrind reports no errors
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Sanitizers

• Another way to do these sorts of checks is using libasan
• Compile your code with -fsanitize=address
• Will slow down your code because it’s doing checks all the time
• Will terminate when it finds bad behaviour
• Other sanitizers available

– -fsanitize=undefined
– -fsanitize=memory
– -fsanitize=thread
– -fsanitize=leak

• Not all of them can be used together, some are not useful by
themselves.
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