
Hacking in C
Attacks 3 and memory safety
Thom Wiggers

1



Table of Contents

Recap

printf is Turing complete

Defeating W⊕X

ASLR

Memory safety

Some announcements

2



Recap of last week

• Overwriting buffers to take over control flow

– Overwriting local variables
– Overwrite the return address

• Shell code: bytecode to spawn a shell

– Using tricks to stay clear of NULL bytes.

• Mitigations

– Less code
– Safer languages
– Dynamic analysis
– Static analysis
– Stack canaries
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The general plan of attack

1. Identify vulnerabilities

– Format strings: %p leads something else than %p being printed
– Buffer overflows: gets, strcpy, segmentation error

2. Identify how you can figure out what’s going on at the other side

– Local: use gdb
– Remote: %p%p%p

3. Determine for a buffer overflow when it crashes: is there maybe a
return address or frame pointer there?

4. Figure out how you’re going to reach your goals

– Take over return address to execute other function

a. Find other function’s address
b. Overwrite return address

– Inject your own code (shellcode)

a. Figure out where to put shellcode
b. Overwrite return address
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Tic-Tac-Toe

Figure: tic-tac-toe in a format string

https://github.com/carlini/printf-tac-toe
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W⊕X

• Write XOR eXecute

• Mark “data” pages as writable, “code” pages as executable, never
both.

• We had to turn this off for our shellcode-based attacks!
• Means we can only jump to code already present in the program.
• Is W⊕X the end of attacks on programs that do not contain a

function give_me_shell_pls()?
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Looking for code

• There is a lot more code present than just what’s in program.c

• Whole of libc usually loaded in most programs.
• Does libc contain give_me_shell_pls()?
• Answer: Kinda.
• system
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system

int system(const char* command);

“The system() library function uses fork() to create a child process
that executes the shell command specified in command. . . ”

10



Return to libc

If we can somehow prepare the argument for system(), we can overwrite
the return address with the address of system() and start the shell. . .

11



Back in the days of yore

Plan of attack in Ye olden days (x86) when arguments were passed via the
stack
1. Get address of libc and offset of system()

– /proc/$PID/maps | grep libc
– nm -D /lib/libc.so.6 | grep system

2. Write address of /bin/sh to the stack in place of argument
3. Overwrite return address in stack frame with address of system()
4. Optional: set up return address to normally terminate program

– Alternatively, set up return address to address of exit()
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Nowadays: AMD64

• Arguments passed through registers

• How do we load the address of /bin/sh into %rdi?
• We’re looking for code that does

pop %rdi
retq

• There probably isn’t any function that just does that. . .
• But we don’t have to jump to the start of any function!
• We can jump to any place in libc
• We can probably find pop %rdi;retq somewhere in libc.
• We call such snippets gadgets
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Plan of attack

1. Overwrite return address with address of gadget

2. Put address of /bin/sh behind gadget
3. Put address of system() behind

What will happen?

1. Function returns: pops return address from stack
2. Returns to gadget: pops address of /bin/sh
3. Gadget returns: pops address of system() and jumps to it

Note that we write multiple return addresses, which means we need to
write NULL bytes on AMD64!
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Countermeasures

• Can make sure a 0x00 is in the address of libc
– Will stop string functions from reading past it
– Mainly helps on x86, AMD64 addresses already contain 0x00

bytes
– Only complicates string-based attacks

• Remove functionality from libc
– What is necessary, and what is not though?
– Compatibility issues?
– What code exactly can cause problems?
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Return-oriented programming

• As seen, we are not restricted to the functions in libc

– We can use any gadget at any arbitrary address
• We can chain many such gadgets, if each ends in return (or jump).
• Use these gadgets to construct any code we want
• This is called return-oriented programming
• ROP enables malicious computation without malicious code
• Introduced in 2007 by Shacham, won ACM CCS 2017 Test of Time

award.
• libc contains enough gadgets to allow ROP to be Turing-complete
• There are tools to automate the search for gadgets and ROP chains.
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ROP: Example

vulnfunc()

...
retq

0xcafebabe

...
pop %rdi
retq

0xfeedface

...
xor %rax, %rax
retq

0xdeadbeef

...
mov %rdx, %rax
pop %rsi
retq

(corrupted) stack

0x7f1229d0f4a0 (execlp)
0x7f1229dd9f20 (“/bin/sh”)
0xdeadbeef
0xfeedface
0x7f1229dd9f20 (“/bin/sh”)
0xcafebabe
0x414141414141414141

registers

rax unknown
rdx unknown
rdi unknown
rsi unknown

Will now jump to execlp with arguments in rdi, rsi, rdx
i.e. execlp(“/bin/sh”, “/bin/sh”, NULL);
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Static addresses

• Both ROP and our shellcode-based attacks required us to know
addresses

• Especially ROP requires exact addresses

– Shellcode could maybe work around randomisation it with a
large NOP sled and some brute force

• We have been switching off address randomization throughout our
exercises because it makes life hard

– setarch -R bash
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ASLR

• Invented by the PaX project (publish patches for hardening Linux) in
2001

• First enabled by default in OpenBSD in 2003, Linux 2005
• Windows gained support in Vista (2007), only for enabled

executables

– It seems Windows 10 randomizes more executables
– It also seems addresses are only rerandomized each reboot

• MacOS randomizes system libraries since October 2007 (OS X 10.5
Leopard)

– All applications since 2011 (10.7 Lion), kernel since 2012.

• Android requires all code to support ASLR (PIE) since Android 5.0.
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Implementing ASLR

• Move around locations of executable base address, libraries, stack
and heap.

– Stack, heap are easy to do: just change stack pointer and heap
allocator managed by OS.

• Shared libraries have to be compiled with ASLR support: use relative
instead of absolute addressing

– “Position-independent code” (PIC) (compile with -fPIC)

• Executables can also be enabled for ASLR using -fPIE.

– “Position-independent executable”

• Depending on your Linux distribution, these may be turned on by
default.
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Defeating ASLR

• Everything is loaded at an offset

• If the offset leaks we may compute the addresses

– printf
– Memory dumps
– . . .

• If only one library is not randomized, we can still ROP
• Side-channels sometimes leak the randomization

– most famous are Spectre, Meltdown

• Guessing
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Entropy

Problems on 32-bit machines: not enough room for randomness
• Cannot randomize lower 12 bits of address

– Would break page alignment
• Cannot randomize upper 4 bits (breaks large memory mappings)
• Result: 32− 12− 4 = 16 bits of entropy
• Only 65536 possibilities
Largely solved on 64-bit machines
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Why do we have all these problems

In C and C++,
• there is no information at run-time to check if we’re within buffers

• It’s not possible to reliably tell the size of a buffer given as an
argument, leading to unsafe designs (memcpy, gets, strcpy)

• The compiler allows definition of variables without initializer.
• Pointers are completely managed by the programmer
• Heap especially is a complete headache: when to free, etc.
• Many of these problems are amplified when references are shared

between threads

– Data races
– Complicated locking mechanisms
– Which of the two threads needs to free, . . .
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Java’s solution

• All code is compiled to special bytecode

• Bytecode runs in virtual machine (JVM)
• Heap is managed by JVM and garbage collector

– Keeps track of all references and cleans up things that went
out-of-scope

• Check all memory accesses if they’re within scope
• Garbage collector frequently suspends threads to do cleanup
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Python’s solution

• Interpreted code, interpreter does all sorts of checks

• No fixed-size array type: all types resize themselves when necessary
• Also garbage-collected
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Rust’s solution

Observations
• Fixing bugs takes longer than spending more time on compile-time

checks
• You can generate a lot of code with checks and rely on the compiler

(LLVM) to optimize any unnecessary bits out.
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Arrays

• Fixed-size arrays contain the size in the type of the function
let array: [u8; 10] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];

• Silently generate functions for array[0]...array[9].
• This means that the compiler can turn array[10] into a compiler

error when it won’t find such a function.
• Of course, for array[var] you will simply need to check if you’re

within bounds.
• Buffers for which the size is not known at compile time can only be

put in resizable vectors.
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Handling the heap

• Rust is designed to be compiled to machine code: no runtime
environment

• That means no garbage collector, so heap needs to be managed
otherwise

• Yet you do not want to burden the programmer with calling free. . .
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Ownership

• Rust uses the concept of ownership to establish the lifetime of a
variable

• Each variable has exactly one owner, although ownership may be
passed on

• When ownership is transferred to another object, it is moved1.
• The original function can no longer access it!
let value = Foo(); // create value
func(value); // move value into func
value // <-- compiler error

1 C++11 also has move semantics, but they are optional, which means you need a lot
of discipline
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References

• To keep ownership, you can also pass on a reference (“borrow it”)

• You can have one or more read-only references OR one mutable
reference

• This makes sure that there are no data races when accessing the
variable concurrently.

• Checked by the compiler at compile-time
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Lifetimes

• If you have a reference to a variable, how do you make sure it
doesn’t get deleted?

• Rust attaches a lifetime to the type of borrowed variables
• If the reference will outlive the owned variable, the compiler won’t

let it be borrowed!
• This also solves the “return a pointer to a stack variable” problem
{ let r;

{ let x = 5; r = &x; }
println!("r: {}", r); }

error[E0597]: `x` does not live long enough
--> src/main.rs:3:26

3 | { let x = 5; r = &x; }
| ^^ - `x` dropped here
| |
| borrowed value does not live long enough
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What has Rust learnt

• C specifies undefined behaviour and forces the programmer to avoid
it

– Admittedly, it’s much simpler to write a C compiler
• In Rust, the much more advanced type system won’t allow undefined

behaviour
• Rust shows that you don’t need a runtime environment to generate

fast code.
• If you want to learn more about Rust

– https://rust-lang.org
– The Rust book https://doc.rust-lang.org/book/

• About type systems and compiler design

– Compiler Construction (NWI-IMC004)

I Master’s course
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Exercise 4

A write-up for exercise 4 is available on my website.
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Exercise 5

Solutions to exercise 5 will be presented tomorrow, by me, in the tutorial.
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Q&A

After the presentation of the solutions, I will have time to answer
questions.

38



Exam

I will also talk a bit more about the exam tomorrow.
The deadline for the exam is on the last day of the exam period, so
Friday 3 July.
The exam will be a set of assignments. They will be in varying levels of
difficulty.
You will be graded mainly on the write-up that you produce, much less so
on if you manage to complete them all. We will be looking for you
demonstrating a systematic approach, your analysis of what you see
happening, and your understanding of the course material.
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Exam (cont.)

The exam assignments will be individual. You can use any normal
resource (books, internet); try to include what you use in your write-up
and explain why any such thing applies. You are not supposed to work
with other people or course participants on these assignments, however.
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